iccsa-20-waves

git clone https://git.igankevich.com/iccsa-20-waves.git
Log | Files | Refs

commit 7c184cec46392f521e67086de1c2597691ae6a08
parent 5129cf5a12e337aa1a5f3088edd1d768ac4c7eb8
Author: Ivan Gankevich <i.gankevich@spbu.ru>
Date:   Mon, 16 Mar 2020 12:17:52 +0300

Copy everything from math repo.

Diffstat:
main.tex | 342+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++--
progressively-moving-surface.tex | 156+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
references.bib | 30++++++++++++++++++++++++++++++
stationary-surface.tex | 62++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
4 files changed, 582 insertions(+), 8 deletions(-)

diff --git a/main.tex b/main.tex @@ -1,10 +1,18 @@ \documentclass[runningheads]{llncs} \usepackage{amsmath} +\usepackage{amssymb} \usepackage{booktabs} \usepackage{graphicx} \usepackage{url} +\newcommand{\Jacobian}{\mathbb{J}} +\newcommand{\Real}[1]{\operatorname{Re}#1} +\newcommand{\Imag}[1]{\operatorname{Im}#1} +\newcommand{\VectorL}[1]{\left[\begin{array}{l}#1\end{array}\right]} +\newcommand{\VectorR}[1]{\left[\begin{array}{r}#1\end{array}\right]} +\newcommand{\DerivativeT}[1]{\frac{\partial{#1}}{\partial{}t}} + \begin{document} \title{TODO\thanks{Supported by Saint Petersburg State University (grants @@ -25,14 +33,14 @@ \institute{Saint Petersburg State University\\ 7-9 Universitetskaya Emb., St Petersburg 199034, Russia\\ -\email{st049350@student.spbu.ru},\\ -\email{a.degtyarev@spbu.ru},\\ -\email{st047824@student.spbu.ru},\\ -\email{i.gankevich@spbu.ru},\\ -\email{st047437@student.spbu.ru},\\ -\email{st016177@student.spbu.ru},\\ -\email{v.khramusin@spbu.ru} -\url{https://spbu.ru/}} + \email{st049350@student.spbu.ru},\\ + \email{a.degtyarev@spbu.ru},\\ + \email{st047824@student.spbu.ru},\\ + \email{i.gankevich@spbu.ru},\\ + \email{st047437@student.spbu.ru},\\ + \email{st016177@student.spbu.ru},\\ + \email{v.khramusin@spbu.ru}\\ + \url{https://spbu.ru/}} \maketitle @@ -48,7 +56,325 @@ TODO \end{abstract} \section{Introduction} + +There are two mathematical models that describe rigid body motion and fluid +particle motion: equations of translational and angular motion of the rigid +body (Newton's Second Law) and Gerstner equations for ocean waves (which are +solutions to linearised equations of motions for fluid particles). Usually, we +use these models independently to generate incident ocean waves and then +compute body motions caused by these waves. To measure the effect of still +fluid on an oscillating rigid body (radiation forces) and the effect of fluid +particles hitting the body (diffraction forces), we use added masses and +damping coefficients~--- simplified formulae derived for small-amplitude +oscillatory motion. + +But, what if we want to simulate large-amplitude rigid body motion with greater +accuracy? There are two possible ways. First, we may use numerical methods such +as Reynolds-Averaged Navier Stokes (RANS) method~\cite{wackers2011rans}. This +method is accurate, can be used for viscous fluid, but not the most +computationally efficient. Second, we may solve Gerstner equations with +appropriate boundary condition and use the solution to compute both rigid body +and fluid particle motion around it. This paper explores this second option. + +%and compares the results to the results of the method of added masses and numerical solver. + + + \section{Methods} + +\subsection{Equations of motions with a moving surface boundary} + +An oscillating rigid body that floats in the water and experiences incident +waves both reflects existing waves and generates new waves: +\begin{itemize} +\item fluid particles hit the body, causing it to move, and then reflect from it; +\item moving body hits fluid particles and makes them move. +\end{itemize} +Both wave reflection and generation have the same nature~--- they are +caused by the collision of the particles and the body~--- hence we +describe them by the same set of formulae. Hereinafter we borrow the +mathematical notation for Lagrangian description of the flow +from~\cite{nouguier2015}. + +In Lagrangian description of flow instantaneous particle coordinates +\(\vec{R}=(x,y,z)\) depend on particle positions at rest (independent initial +coordinates) \(\vec{\zeta}=(\alpha,\beta,\delta)\) and time \(t\), +i.e.~\(\vec{R}=\vec{R}(\alpha,\beta,\delta,t)\). Using this notation +equation of motion (conservation of momentum) is written as +\begin{equation} +\vec{R}_{tt} + g \hat{z} + \frac{1}{\rho} \nabla_{\vec{R}} p = 0, +\label{eq-momentum} +\end{equation} +where \(\vec{R}\)~--- particle coordinates, \(\hat{z}\)~--- +unit vector in the direction of positive \(z\), \(p\)~--- pressure, +\(\rho\)~--- fluid density, \(g\)~--- gravitational acceleration. +Continuity equation (conservation of mass) is written as +\begin{equation*} +\left|\Jacobian\right| = 1, \qquad +\frac{\partial}{\partial t}\left|\Jacobian\right| = 0, \qquad +\Jacobian = \left[ +\begin{array}{lll} +x_\alpha & y_\alpha & z_\alpha \\ +x_\beta & y_\beta & z_\beta \\ +x_\delta & y_\delta & z_\delta \\ +\end{array} +\right]. +\end{equation*} +Multiplying both sides of \eqref{eq-momentum} by \(\Jacobian\) and noting that +\(\nabla_{\vec{\zeta}}p =\Jacobian\nabla_{\vec{R}}p\) gives +\begin{equation*} +\Jacobian\vec{R}_{tt} + +g\vec\nabla\left( \vec{R} \cdot \hat{z} \right) + +\frac{1}{\rho}\vec\nabla p +\end{equation*} +Following \cite{nouguier2015} we seek solution to this equation in the form +of a simultaneous perturbation expansion for position, pressure, and the +vorticity function: +\begin{equation*} +\begin{aligned} +\vec{R} &= \vec{R}_0 + \vec{R}_1 + \vec{R}_2 + ... \\ +p &= p_a - \rho g \delta + p_1 + p_2 + ... +\end{aligned} +\end{equation*} +Zeroth order terms are related to particles positions at rest: +\begin{equation*} +\begin{aligned} +\vec{R}_0 &= \vec{\zeta} \\ +p_0 &= p_a - \rho g \delta +\end{aligned} +\end{equation*} +First-order terms are solutions to linearised equation of motion and equation of +continuity: +\begin{equation*} +\begin{aligned} +& \vec{R}_{1tt} + g\vec\nabla\left( \vec{R}_1 \cdot \hat{z} \right) + +\frac{1}{\rho}\vec\nabla p_1 = 0 \\ +& \vec\nabla \cdot \vec{R}_1 = 0 +\end{aligned} +\end{equation*} +We seek solutions of the form \(\vec{R}_1=\nabla w\) to make the flow +irrotational. Plugging this form into the equations gives +\begin{equation} +\label{eq-mass-momentum} +\begin{aligned} +& \vec\nabla\left( w_{tt} + g w_\delta + p_1/\rho \right) = 0 \\ +& \Delta w = 0 +\end{aligned} +\end{equation} +The first equation denotes conservation of momentum (Newton's second law, +equation of motion) and the second equation denotes conservation of mass +(equation of continuity). + +When we have no boundary condition we seek solutions of the form +\begin{equation} +\label{eq-inverse-fourier} +w\left(\alpha,\beta,\delta\right) = +\Real{ +f(u,v)\exp\left(iu\alpha+iv\beta+k\delta-i\omega{}t\right) +}, +\end{equation} +where \(u\) and \(v\) are wave numbers. We plug \eqref{eq-inverse-fourier} into +continuity equation \eqref{eq-mass-momentum} where \(p_1\) is constant and get +\(k=\sqrt{u^2+v^2}\). That means that expression~\eqref{eq-inverse-fourier} +is the solution to this equation when \(k\) is wave vector magnitude, +i.e.~\(w\) decays exponentially with increasing water depth multiplied by +wave vector magnitude. + +Then we plug \eqref{eq-inverse-fourier} into equation of motion +\eqref{eq-mass-momentum} and get \(\omega^2=gk\), which is dispersion relation +from classic linear wave theory. That means that the expression is the solution +to this equation when angular frequency depends on the wave number, +i.e.~waves of different lengths have different phase velocities. + +Before solving this system of equations for an arbitrary moving surface +boundary, we consider particular cases to substantiate the choice of the form of +the solution. + +We use \(\Real{\exp\left(iu\alpha+iv\beta+k\delta-i\omega{}t\right)}\) to +describe fluid particle potential. Here \(u\) and \(v\) are wave numbers, +\(\omega\) is angular frequency, and \(k\) is wave vector. This notation makes +formulae short and is equivalent to the description that uses traditional +harmonic functions. This notation allows for easy transition to irregular +waves via Fourier transforms which are essential for fast computations. Such +solutions will be studied in future work. + +\subsection{Stationary surface boundary} + +In this section we explore solutions stationary surface boundary in a form of +infinite plain surface. On such a boundary the projection of particle velocity +to the surface normal is nought. We write boundary conditions and +corresponding solutions for different orientations of this boundary and then +generalise these solutions to a parametric surface. + +\subsubsection{Infinite wall} + +On a vertical surface the boundary condition is written as +\begin{equation*} +\frac{d}{d t} \vec\nabla w \cdot \vec{n} = +\frac{d}{d t} \frac{\partial}{\partial\alpha} w = 0; +\qquad +\alpha = \alpha_0; +\qquad +\vec{n} = \VectorR{1\\0\\0}. +\end{equation*} +Here we consider only \(\alpha\) coordinate, the derivations for \(\beta\) are +similar. The potential of incident fluid particle has the form +\begin{equation*} +w\left(\alpha,\beta,\delta,t\right) = +\exp\left(k\delta - i\omega t\right) +\exp\left(iu\alpha + iv\beta\right). +\end{equation*} +Velocity vector of this particle is +\begin{equation*} +\begin{aligned} +& +\frac{d}{dt} \vec\nabla w = +i\omega \left( \vec{d}_k+i\vec{d}_i \right) +\exp\left(k\delta - i\omega t\right) +\exp\left(iu\alpha + iv\beta\right); +\\ +& +\vec{d}_k = \VectorR{0\\0\\k}; +\qquad +\vec{d}_i = \VectorR{u\\v\\0}. +\end{aligned} +\end{equation*} +where \(\vec{d}_i\) is horizontal incident wave direction and \(\vec{d}_k\) is +a vector that contains amplitude damping coefficient. (We use the vector +instead of the scalar to shorten mathematical notation, otherwise we would have write a +separate formula for vertical coordinate.) +%In addition to this, it makes the solution for finite depth look the same +%way as all other solutions. +The law of reflection +states that the angle of incidence equals the angle of reflection. Then +the direction of reflected wave is% +\footnote{Initially, we included the third +component of incident wave direction making the +vector complex-valued, however, the solution blew up as a result of mixing real +and imaginary parts in dot products involving complex-valued vectors. The +problem was solved by reflecting in two dimensions which is intuitive for +ocean waves, but not for particles.} +\begin{equation*} +\vec{d}_r = +\vec{d}_i-\vec{d}_s = +\vec{d}_i-2\vec{n}\left(\vec{d}_i\cdot\vec{n}\right) = +\VectorR{-u\\v\\0}. +\end{equation*} +We seek solutions of the form +\begin{equation} +\label{eq-w-alpha-0} +w\left(\alpha,\beta,\delta,t\right) = +\left[ C_1 \exp\left(iu\alpha\right) + C_2 \exp\left(-iu\alpha\right) \right] +\exp\left(k\delta - i\omega t\right) \exp\left(iv\beta\right). +\end{equation} +We plug this expression into the boundary condition and get +\begin{equation*} +C_1\exp\left(i u\alpha_0 \right) - +C_2\exp\left(-i u\alpha_0 \right) = 0, +\end{equation*} +hence \(C_1=C\exp(-iu\alpha_0)\) and \(C_2=-C\exp(iu\alpha_0)\). +Constant \(C\) may take arbitrary values, here we set it to 1. +Plugging \(C_1\) and \(C_2\) into~\eqref{eq-w-alpha-0} gives the final solution +\begin{equation*} +w\left(\alpha,\beta,\delta,t\right) = +\cosh\left(iu\left(\alpha_0-\alpha\right)\right) +\exp\left(k\delta - i\omega t\right) +\exp\left(iv\beta\right). +\end{equation*} +There are two exponents in this solution with the opposite signs before +horizontal coordinate \(\alpha\). These exponents denote +incident and reflected wave respectively. +The amplitude of the reflected wave does not decay as we go farther +from the boundary, but decay only when we go deeper in the ocean. This behaviour +corresponds to the real-world ocean waves. + +\subsubsection{Infinite plate} + +On a horizontal surface the boundary condition is written as +\begin{equation*} +\frac{d}{d t} \vec\nabla w \cdot \vec{n} = +\frac{d}{d t} \frac{\partial}{\partial\delta} w = 0; +\qquad +\delta = \delta_0; +\qquad +\vec{n} = \VectorR{0\\0\\1}. +\end{equation*} +Analogously to wave direction we write vector form of the incident particle +trajectory radius damping coefficient as \((0,0,k)\), hence vector form of the +reflected coefficient is \((0,0,-k)\). We seek solutions of the +form +\begin{equation} +\label{eq-w-delta-0} +w\left(\alpha,\beta,\delta,t\right) = +\left[ C_1\exp\left(k\delta\right) + C_2\exp\left(-k\delta\right) \right] +\exp\left(- i\omega t\right) \exp\left(iu\alpha + iv\beta\right). +\end{equation} +We plug this expression into the boundary condition and get +\begin{equation*} +C_1\exp\left(k\delta_0\right) - C_2\exp\left(-k\delta_0\right) = 0. +\end{equation*} +Hence \(C_1=C\exp\left(-k\delta_0\right)\) and +\(C_2=C\exp\left(k\delta_0\right)\). Constant \(C\) may take arbitrary values, +here we set it to \(1/2\). Plugging \(C_1\) and \(C_2\) +into~\eqref{eq-w-delta-0} gives the final solution +\begin{equation*} +w\left(\alpha,\beta,\delta,t\right) = +\cosh\left(k\left(\delta-\delta_0\right)\right) +\exp\left(-i\omega t\right) +\exp\left(iu\alpha + iv\beta\right). +\end{equation*} +There are two exponents in this solution with opposite signs before +vertical coordinate \(\delta\). These exponents make the radius of +the particle trajectories decay exponentially while approaching the boundary +\(\delta_0\) (i.e.~with increasing water depth). This is known +solution from linear wave theory. + +\subsubsection{Infinite panel} + +On an arbitrary aligned infinite surface the boundary condition is written as +\begin{equation*} +\frac{d}{d t} \vec\nabla w \cdot \vec{n} = 0; +\qquad +\vec{n} \cdot \left(\vec\zeta - \vec\zeta_0\right) = 0, +\end{equation*} +where \(\vec{\zeta_0}\) is the point on the boundary plane and the third +component of the normal vector is nought: \(\vec{n}=(n_1,n_2,0)\), +\(\left|\vec{n}\right|=1\). +The direction of incident wave is \(\vec{d}_i=(u,v,0)\) and the +direction of reflected wave is \(\vec{d}_r\). We seek solutions of the form +\begin{equation} +\label{eq-w-all-0} +\begin{aligned} +w\left(\alpha,\beta,\delta,t\right) = & +C_1\exp\left( \left(i\vec{d}_i+\vec{d}_{k}\right)\cdot\vec\zeta - i\omega_1 +t\right) \\ + & +C_2\exp\left( \left(i\vec{d}_r+\vec{d}_{k}\right)\cdot\vec\zeta - i\omega_2 t\right). +\end{aligned} +\end{equation} +We plug this expression into the boundary condition and get +\begin{equation*} +\left( i\vec{d_i}\cdot\vec{n} \right) C_1 ++ +\left( i\vec{d_r}\cdot\vec{n} \right) C_2 +\exp\left( -i\vec{d}_s\cdot\vec\zeta_0 \right) = 0. +\end{equation*} +Here we substitute \(\vec{d}_r\cdot\vec{n}\) with \(-\vec{d}_i\cdot\vec{n}\) +which is derived from the formula for \(\vec{d}_r\) +(see~sec.~\ref{sec-formulae}). +Hence, the boundary condition reduces to +\begin{equation*} +C_1 - C_2 \exp\left( -i\vec{d}_s\cdot\vec\zeta_0 \right) = 0. +\end{equation*} +Hence +\(C_1=\frac{1}{2}\exp\left(-\frac{1}{2}i\vec{d}_s\cdot\vec\zeta_0\right)\) +and \(C_2=\frac{1}{2}\exp\left(\frac{1}{2}i\vec{d}_s\cdot\vec\zeta_0\right)\). +This solution reduces to the solution for the wall when \(\vec{n}=(0,0,1)\). + +%\input{stationary-surface.tex} +%\input{progressively-moving-surface.tex} + + +\subsection{OpenCL implementation} Virtual testbed is a program for personal computers. Its main feature is to perform all calculations in real time, diff --git a/progressively-moving-surface.tex b/progressively-moving-surface.tex @@ -0,0 +1,156 @@ +\subsubsection{Progressively moving surface} + +When a particle touches a parametric surface given by +\begin{equation*} +\vec{S}=\vec{S}(a,b,t); +\qquad +a,b\in{}A=[0,1]; +\qquad +\vec{n}=\frac{\partial\vec S}{\partial a} \times \frac{\partial\vec S}{\partial b} +\end{equation*} +where \(a\) and \(b\) are parameters, boundary condition is written as +\begin{equation*} +\frac{d}{d t} \vec\nabla w \cdot\vec{n} = \frac{d}{d t} \vec S \cdot\vec{n}; +\qquad +\vec\zeta = \vec S +. +\end{equation*} +We seek solutions of the form +\begin{equation*} +\begin{aligned} +& w\left(\alpha,\beta,\delta,t\right) += C_1\exp\left( \left(i\vec{d}_i+\vec{d}_{k}\right)\cdot\vec\zeta - i\omega t\right) + \\ +& +\iint\limits_{a,b\,\in{}A} +C_2\exp\left( \left(i\vec{d}_r+\vec{d}_{k}\right)\cdot\vec\zeta - i\omega t\right) +da\,db\,+ \\ +& +\iint\limits_{a,b\,\in{}A} +C_3\exp\left( \left(i\vec{d}_i+i\vec{d}_\upsilon+\vec{d}_{k_3}\right)\cdot\vec\zeta - i\omega_3 t\right) +da\,db, +\end{aligned} +\end{equation*} +where \(\vec{d}_\upsilon=\vec{n}\left(\DerivativeT{\vec{S}}\cdot\vec{n}\right)\) +is a projection of surface velocity to the surface normal. +Here \(C_2\), \(C_3\) and \(\vec{n}\) depend on both \(a\) and \(b\), +i.e.~we have one reflection for each point of the surface. +We plug this expression into the boundary condition and get +\begin{equation*} +\begin{aligned} +& +C_1 f_1 +\exp\left( \left(i\vec{d}_i+\vec{d}_{k}\right)\cdot\vec{S}-i\omega{}t \right) + \\ +& +\iint\limits_{a,b\,\in{}A} +C_2 f_2 +\exp\left( \left(i\vec{d}_r+\vec{d}_{k}\right) \cdot \vec{S} -i\omega{}t \right) +da\,db\, ++ \\ +& +\iint\limits_{a,b\,\in{}A} +C_3 f_3 +\exp\left( +\left(i\vec{d}_i+i\vec{d}_\upsilon+\vec{d}_{k_3}\right)\cdot\vec{S}-i\omega_3{}t\right) +da\,db += \frac{\partial\vec{S}}{\partial t} \cdot \vec{n}, +\end{aligned} +\end{equation*} +where +\begin{equation*} +\begin{aligned} +& +f_1 = \omega \left(\vec{d}_i\cdot\vec{n}\right); +\qquad +f_2 = -\omega \left(\vec{d}_i\cdot\vec{n}\right); \\ +& +f_3 = \left( + i\DerivativeT{\vec{d}_\upsilon} + + \left(\vec{d}_i + \vec{d}_\upsilon\right) \circ + \left(\omega_3-\DerivativeT{\vec{d}_\upsilon}\right) +\right)\cdot\vec{n}. +\end{aligned} +\end{equation*} +Here \(\circ\) denotes Hadamard (element-wise) vector product. +Take double integral over \(a\) and \(b\) of each side of the equation, +assume that expressions under integral sign are equal (i.e.~remove +integral sign from the equation), and make substitutions for derivatives that +were made in the previous section. Then, the equation reduces to +the form, similar to moving and rotating panel, but with different terms for the +boundary: +\begin{equation*} +\begin{aligned} +& +C_1 f_1 +\exp\left( \left(i\vec{d}_i+\vec{d}_{k}\right)\cdot\vec{S}\right) + +S C_2 f_2 +\exp\left( \left(i\vec{d}_r+\vec{d}_{k}\right)\cdot\vec{S}\right) ++ \\ +& +S C_3 f_3 +\exp\left( +\left(i\vec{d}_i+i\vec{d}_\upsilon+\vec{d}_{k_3}\right)\cdot\vec{S}-i\omega_3{}t+i\omega{}t\right) += +\left(\DerivativeT{\vec{S}}\cdot\vec{n}\right)\exp\left(i\omega{}t\right), +\end{aligned} +\end{equation*} +Here \(S\) without vector arrow denotes surface area. Choose \(C_1\) and \(C_2\) +so that the first and the second term cancel each other out, and calculate +\(C_3\) from the resulting equation: +\begin{equation*} +\begin{aligned} +& +C_1 = \frac{1}{f_1} +\exp\left( + -\left(i\vec{d}_i+\vec{d}_{k}\right)\cdot\vec{S} +\right); \\ +& +C_2 = \frac{1}{S f_2} +\exp\left( + -\left(i\vec{d}_r+\vec{d}_{k}\right)\cdot\vec{S} +\right); \\ +& +C_3 = \frac{\DerivativeT{\vec{S}}\cdot\vec{n}}{ S f_3 } +\exp\left(- +\left(i\vec{d}_i+i\vec{d}_\upsilon+\vec{d}_{k_3}\right)\cdot\vec{S}+i\omega_3{}t\right) +\end{aligned} +\end{equation*} + +Plug the solution into continuity equation and get +\begin{equation*} +\begin{aligned} +& +- \left(u - n_1 \left(\vec{d}_i\cdot\vec{n}\right)\right)^2 +- \left(v - n_2 \left(\vec{d}_i\cdot\vec{n}\right)\right)^2 ++ k^2 = 0 \\ +& +- \left(u + n_1 \left(\vec{d}_\upsilon\cdot\vec{n}\right)\right)^2 +- \left(v + n_2 \left(\vec{d}_\upsilon\cdot\vec{n}\right)\right)^2 ++ k_3^2 = 0 \\ +& +k = \pm\sqrt{u^2+v^2} \\ +& +k_3 = \pm\sqrt{\smash[b]{u^2+v^2 + +\left(\vec{d}_\upsilon\cdot\vec{n}\right) \left( +\vec{d}_\upsilon\cdot\vec{n} + \vec{d}_i\cdot\vec{n} \right)}} +\end{aligned} +\end{equation*} +This equation makes \(k_3\) depend on time, which does not cause trouble, +because time derivative is always multiplied by \(n\) and the third component +of \(n\) is always nought. + +When \(\vec{n}\) depends on time, i.e.~the surface rotates, the +coefficients we write coefficients as +\begin{equation*} +\begin{aligned} +& +f_1 = \left(\omega\vec{d}_i\right)\cdot\vec{n} +\\ +& +f_2 = +\left(i\vec{d}_r\circ\left(\DerivativeT{\vec{d}_s}-i\omega\right)\right)\cdot\vec{n}; +\\ +& +f_3 = +\end{aligned} +\end{equation*} + diff --git a/references.bib b/references.bib @@ -0,0 +1,30 @@ + +@Article{ wackers2011rans, + author = {Wackers, J. and Koren, B. and Raven, H. C. and van der + Ploeg, A. and Starke, A. R. and Deng, G. B. and Queutey, P. + and Visonneau, M. and Hino, T. and Ohashi, K.}, + title = {Free-Surface Viscous Flow Solution Methods for Ship + Hydrodynamics}, + journal = {Archives of Computational Methods in Engineering}, + year = {2011}, + month = {Mar}, + day = {01}, + volume = {18}, + number = {1}, + pages = {1--41}, + issn = {1886-1784}, + doi = {10.1007/s11831-011-9059-4} +} + +@Article{ nouguier2015, + title = {Second-order Lagrangian description of tri-dimensional + gravity wave interactions}, + volume = {772}, + doi = {10.1017/jfm.2015.179}, + journal = {Journal of Fluid Mechanics}, + publisher = {Cambridge University Press}, + author = {Nouguier, Frédéric and Chapron, Bertrand and Guérin, + Charles-Antoine}, + year = {2015}, + pages = {165--196} +} diff --git a/stationary-surface.tex b/stationary-surface.tex @@ -0,0 +1,62 @@ +\subsubsection{Stationary surface} + +When a particle touches a surface given by +\begin{equation*} +\vec{S}=\vec{S}(a,b,t); +\qquad +a,b\in{}A=[0,1]; +\qquad +\vec{n}=\frac{\partial\vec S}{\partial a} \times \frac{\partial\vec S}{\partial b} +\end{equation*} +where \(a\) and \(b\) are parameters, boundary condition is written as +\begin{equation*} +\frac{d}{d t} \vec\nabla w \cdot\vec{n} = 0; +\qquad +\vec\zeta = \vec S +. +\end{equation*} +The third component of the normal vector is nought: \(\vec{n}=(n_1,n_2,0)\), +\(\left|\vec{n}\right|=1\). +The direction of incident wave is \(\vec{d}_i=(u,v,0)\) and the +direction of reflected wave is \(\vec{d}_r\) from +equation~\eqref{eq-dr}. We seek solutions of the form +\begin{equation} +\label{eq-w-all-0} +\begin{aligned} +w\left(\alpha,\beta,\delta,t\right) = +\, & +C_1\exp\left( \left(i\vec{d}_i+\vec{d}_{k}\right)\cdot\vec\zeta - i\omega +t\right) \\ + +\, & +C_2\exp\left( \left(i\vec{d}_r+\vec{d}_{k}\right)\cdot\vec\zeta - i\omega t\right). +\end{aligned} +\end{equation} +Here \(k\) is damping coefficient and \(\omega\) is wave velocity. +The coefficient is calculated from continuity equation. +We plug this expression into the boundary condition and get +\begin{equation*} +\left(\vec{d_i}\cdot\vec{n} \right) C_1 ++ +\left(\vec{d_r}\cdot\vec{n} \right) C_2 +\exp\left( -i\vec{d}_s\cdot\vec\zeta_0 \right) = 0. +\end{equation*} +Hence +\begin{equation*} +C_1 = +\frac{1}{2} +\exp\left( -\frac{1}{2}i\vec{d}_s\cdot\zeta_0 \right) +\qquad +C_2 = +\frac{1}{2} +\exp\left( \frac{1}{2}i\vec{d}_s\cdot\zeta_0 \right) +\end{equation*} +Here we substituted \(\vec{d}_r\cdot\vec{n}\) with \(-\vec{d}_i\cdot\vec{n}\) +(see~sec.~\ref{sec:org653b1bb}). +Now plug the solution into continuity equation to get damping coefficients +and velocity: +\begin{equation*} +k = \pm\sqrt{u^2+v^2}; +\qquad +\omega^2 = g k. +\end{equation*} +