iccsa-20-waves

Virtual Testbed: Simulation of Ocean Wave Reflection from the Ship Hull
git clone https://git.igankevich.com/iccsa-20-waves.git
Log | Files | Refs

progressively-moving-surface.tex (4717B)


      1 \subsubsection{Progressively moving surface}
      2 
      3 When a particle touches a parametric surface given by
      4 \begin{equation*}
      5 \vec{S}=\vec{S}(a,b,t);
      6 \qquad
      7 a,b\in{}A=[0,1];
      8 \qquad
      9 \vec{n}=\frac{\partial\vec S}{\partial a} \times \frac{\partial\vec S}{\partial b}
     10 \end{equation*}
     11 where \(a\) and \(b\) are parameters, boundary condition is written as
     12 \begin{equation*}
     13 \frac{d}{d t} \vec\nabla w \cdot\vec{n} = \frac{d}{d t} \vec S \cdot\vec{n};
     14 \qquad
     15 \vec\zeta = \vec S
     16 .
     17 \end{equation*}
     18 We seek solutions of the form
     19 \begin{equation*}
     20 \begin{aligned}
     21 & w\left(\alpha,\beta,\delta,t\right)
     22 = C_1\exp\left( \left(i\vec{d}_i+\vec{d}_{k}\right)\cdot\vec\zeta - i\omega t\right) + \\
     23 &
     24 \iint\limits_{a,b\,\in{}A}
     25 C_2\exp\left( \left(i\vec{d}_r+\vec{d}_{k}\right)\cdot\vec\zeta - i\omega t\right)
     26 da\,db\,+ \\
     27 &
     28 \iint\limits_{a,b\,\in{}A}
     29 C_3\exp\left( \left(i\vec{d}_i+i\vec{d}_\upsilon+\vec{d}_{k_3}\right)\cdot\vec\zeta - i\omega_3 t\right)
     30 da\,db,
     31 \end{aligned}
     32 \end{equation*}
     33 where \(\vec{d}_\upsilon=\vec{n}\left(\DerivativeT{\vec{S}}\cdot\vec{n}\right)\)
     34 is a projection of surface velocity to the surface normal.
     35 Here \(C_2\), \(C_3\) and \(\vec{n}\) depend on both \(a\) and \(b\),
     36 i.e.~we have one reflection for each point of the surface.
     37 We plug this expression into the boundary condition and get
     38 \begin{equation*}
     39 \begin{aligned}
     40 &
     41 C_1 f_1
     42 \exp\left( \left(i\vec{d}_i+\vec{d}_{k}\right)\cdot\vec{S}-i\omega{}t \right) + \\
     43 &
     44 \iint\limits_{a,b\,\in{}A}
     45 C_2 f_2
     46 \exp\left( \left(i\vec{d}_r+\vec{d}_{k}\right) \cdot \vec{S} -i\omega{}t \right)
     47 da\,db\,
     48 + \\
     49 & 
     50 \iint\limits_{a,b\,\in{}A}
     51 C_3 f_3
     52 \exp\left(
     53 \left(i\vec{d}_i+i\vec{d}_\upsilon+\vec{d}_{k_3}\right)\cdot\vec{S}-i\omega_3{}t\right)
     54 da\,db
     55 = \frac{\partial\vec{S}}{\partial t} \cdot \vec{n},
     56 \end{aligned}
     57 \end{equation*}
     58 where
     59 \begin{equation*}
     60 \begin{aligned}
     61 &
     62 f_1 = \omega \left(\vec{d}_i\cdot\vec{n}\right);
     63 \qquad
     64 f_2 = -\omega \left(\vec{d}_i\cdot\vec{n}\right); \\
     65 &
     66 f_3 = \left(
     67         i\DerivativeT{\vec{d}_\upsilon} +
     68         \left(\vec{d}_i + \vec{d}_\upsilon\right) \circ
     69         \left(\omega_3-\DerivativeT{\vec{d}_\upsilon}\right)
     70 \right)\cdot\vec{n}.
     71 \end{aligned}
     72 \end{equation*}
     73 Here \(\circ\) denotes Hadamard (element-wise) vector product.
     74 Take double integral over \(a\) and \(b\) of each side of the equation,
     75 assume that expressions under integral sign are equal (i.e.~remove
     76 integral sign from the equation), and make substitutions for derivatives that
     77 were made in the previous section. Then, the equation reduces to
     78 the form, similar to moving and rotating panel, but with different terms for the
     79 boundary:
     80 \begin{equation*}
     81 \begin{aligned}
     82 &
     83 C_1 f_1
     84 \exp\left( \left(i\vec{d}_i+\vec{d}_{k}\right)\cdot\vec{S}\right) + 
     85 S C_2 f_2
     86 \exp\left( \left(i\vec{d}_r+\vec{d}_{k}\right)\cdot\vec{S}\right)
     87 + \\
     88 & 
     89 S C_3 f_3
     90 \exp\left(
     91 \left(i\vec{d}_i+i\vec{d}_\upsilon+\vec{d}_{k_3}\right)\cdot\vec{S}-i\omega_3{}t+i\omega{}t\right)
     92 =
     93 \left(\DerivativeT{\vec{S}}\cdot\vec{n}\right)\exp\left(i\omega{}t\right),
     94 \end{aligned}
     95 \end{equation*}
     96 Here \(S\) without vector arrow denotes surface area. Choose \(C_1\) and \(C_2\)
     97 so that the first and the second term cancel each other out, and calculate
     98 \(C_3\) from the resulting equation:
     99 \begin{equation*}
    100 \begin{aligned}
    101 &
    102 C_1 = \frac{1}{f_1}
    103 \exp\left(
    104     -\left(i\vec{d}_i+\vec{d}_{k}\right)\cdot\vec{S}
    105 \right); \\
    106 &
    107 C_2 = \frac{1}{S f_2}
    108 \exp\left(
    109     -\left(i\vec{d}_r+\vec{d}_{k}\right)\cdot\vec{S}
    110 \right); \\
    111 &
    112 C_3 = \frac{\DerivativeT{\vec{S}}\cdot\vec{n}}{ S f_3 }
    113 \exp\left(-
    114 \left(i\vec{d}_i+i\vec{d}_\upsilon+\vec{d}_{k_3}\right)\cdot\vec{S}+i\omega_3{}t\right)
    115 \end{aligned}
    116 \end{equation*}
    117 
    118 Plug the solution into continuity equation and get
    119 \begin{equation*}
    120 \begin{aligned}
    121 &
    122 - \left(u - n_1 \left(\vec{d}_i\cdot\vec{n}\right)\right)^2
    123 - \left(v - n_2 \left(\vec{d}_i\cdot\vec{n}\right)\right)^2
    124 + k^2 = 0 \\
    125 &
    126 - \left(u + n_1 \left(\vec{d}_\upsilon\cdot\vec{n}\right)\right)^2
    127 - \left(v + n_2 \left(\vec{d}_\upsilon\cdot\vec{n}\right)\right)^2
    128 + k_3^2 = 0 \\
    129 &
    130 k = \pm\sqrt{u^2+v^2} \\
    131 &
    132 k_3 = \pm\sqrt{\smash[b]{u^2+v^2 +
    133 \left(\vec{d}_\upsilon\cdot\vec{n}\right) \left(
    134 \vec{d}_\upsilon\cdot\vec{n} + \vec{d}_i\cdot\vec{n} \right)}}
    135 \end{aligned}
    136 \end{equation*}
    137 This equation makes \(k_3\) depend on time, which does not cause trouble,
    138 because time derivative is always multiplied by \(n\) and the third component
    139 of \(n\) is always nought.
    140 
    141 When \(\vec{n}\) depends on time, i.e.~the surface rotates, the
    142 coefficients we write coefficients as
    143 \begin{equation*}
    144 \begin{aligned}
    145 &
    146 f_1 = \left(\omega\vec{d}_i\right)\cdot\vec{n}
    147 \\
    148 &
    149 f_2 =
    150 \left(i\vec{d}_r\circ\left(\DerivativeT{\vec{d}_s}-i\omega\right)\right)\cdot\vec{n};
    151 \\
    152 &
    153 f_3 = 
    154 \end{aligned}
    155 \end{equation*}
    156