iccsa-20-waves

Virtual Testbed: Simulation of Ocean Wave Reflection from the Ship Hull
git clone https://git.igankevich.com/iccsa-20-waves.git
Log | Files | Refs

stationary-surface.tex (1828B)


      1 \subsubsection{Stationary surface}
      2 
      3 When a particle touches a surface given by
      4 \begin{equation*}
      5 \vec{S}=\vec{S}(a,b,t);
      6 \qquad
      7 a,b\in{}A=[0,1];
      8 \qquad
      9 \vec{n}=\frac{\partial\vec S}{\partial a} \times \frac{\partial\vec S}{\partial b}
     10 \end{equation*}
     11 where \(a\) and \(b\) are parameters, boundary condition is written as
     12 \begin{equation*}
     13 \frac{d}{d t} \vec\nabla w \cdot\vec{n} = 0;
     14 \qquad
     15 \vec\zeta = \vec S
     16 .
     17 \end{equation*}
     18 The third component of the normal vector is nought: \(\vec{n}=(n_1,n_2,0)\),
     19 \(\left|\vec{n}\right|=1\).
     20 The direction of incident wave is \(\vec{d}_i=(u,v,0)\) and the
     21 direction of reflected wave is \(\vec{d}_r\) from
     22 equation~\eqref{eq-dr}.  We seek solutions of the form
     23 \begin{equation}
     24 \label{eq-w-all-0}
     25 \begin{aligned}
     26 w\left(\alpha,\beta,\delta,t\right) =
     27 \, &
     28 C_1\exp\left( \left(i\vec{d}_i+\vec{d}_{k}\right)\cdot\vec\zeta - i\omega
     29 t\right) \\ +
     30 \, &
     31 C_2\exp\left( \left(i\vec{d}_r+\vec{d}_{k}\right)\cdot\vec\zeta - i\omega t\right).
     32 \end{aligned}
     33 \end{equation}
     34 Here \(k\) is damping coefficient and \(\omega\) is wave velocity.
     35 The coefficient is calculated from continuity equation.
     36 We plug this expression into the boundary condition and get
     37 \begin{equation*}
     38 \left(\vec{d_i}\cdot\vec{n} \right) C_1
     39 +
     40 \left(\vec{d_r}\cdot\vec{n} \right) C_2
     41 \exp\left( -i\vec{d}_s\cdot\vec\zeta_0 \right) = 0.
     42 \end{equation*}
     43 Hence
     44 \begin{equation*}
     45 C_1 = 
     46 \frac{1}{2}
     47 \exp\left( -\frac{1}{2}i\vec{d}_s\cdot\zeta_0 \right)
     48 \qquad
     49 C_2 = 
     50 \frac{1}{2}
     51 \exp\left( \frac{1}{2}i\vec{d}_s\cdot\zeta_0 \right)
     52 \end{equation*}
     53 Here we substituted \(\vec{d}_r\cdot\vec{n}\) with \(-\vec{d}_i\cdot\vec{n}\)
     54 (see~sec.~\ref{sec:org653b1bb}).
     55 Now plug the solution into continuity equation to get damping coefficients
     56 and velocity:
     57 \begin{equation*}
     58 k = \pm\sqrt{u^2+v^2};
     59 \qquad
     60 \omega^2 = g k.
     61 \end{equation*}
     62