mmcp-19-gerstner

git clone https://git.igankevich.com/mmcp-19-gerstner.git
Log | Files | Refs

commit eba73f69e728b6abd663a48b0d1cf5c93975f973
parent 15ad16c5a256b66892ea3ea60afe002b097a492e
Author: Ivan Gankevich <igankevich@ya.ru>
Date:   Thu, 18 Jul 2019 22:32:16 +0300

Model.

Diffstat:
main.tex | 26++++++++++++++++++++------
1 file changed, 20 insertions(+), 6 deletions(-)

diff --git a/main.tex b/main.tex @@ -84,20 +84,34 @@ crest propagation on their length and period. As a result \includegraphics[width=\textwidth]{graphics/01-gerstner.png} \includegraphics[width=\textwidth]{graphics/02-gerstner.png} \caption{Analytic solutions: progressive Gerstner wave (top), - extremely high or standing wave (bottom).\label{fig-gerstner}} + a wave with critical height~--- a standing wave + (bottom).\label{fig-gerstner}} \end{figure} -\(r_W=1.134\lambda_Wh_W/4\pi\text{ }\left[\text{m}\right]\) - +Gerstner wave (fig.~\ref{fig-gerstner}) is a cycloid, fluid parcel trajectory +radius \(r_W=1.134\lambda_Wh_W/4\pi\text{ }\left[\text{m}\right]\) of which is fixed +relative to \(z_W\)~--- flat wavy surface level, hence \(z\)-coordinates of the +crest and trough are the same. Here \(\lambda_W\) is the wave length, +\(h_W\)~--- relative wave height defined on the interval \([0..1]\) with +\(h_W=1\) being the maximum wave height for which the crest does not +break (fig.~\ref{fig-gerstner}). Vertical displacement of a fluid parcel +is given by \begin{equation*} \zeta_Z = r_W \cos x_W \exp\left(-2\pi z_W / \lambda_W\right) - \qquad \left[\text{m}\right] + \qquad \left[\text{m}\right]. \end{equation*} - +Horizontal displacement of the same fluid parcel with respect to its initial +position for progressive wave is given by analogous equation, but with +a shift by one fourth of the phase: \begin{equation*} \zeta_X = -r_W \sin x_W \exp\left(-2\pi z_W / \lambda_W\right) - \qquad \left[\text{m}\right] + \qquad \left[\text{m}\right]. \end{equation*} +Critical wave height of Gerstner waves (fig.~\ref{fig-gerstner}) gives the correct +ratio of wave height to wave length, but 60 degree slope limit for standing +wave with steepness \(\approx{}1/4\) as well as 30 degree slope limit for +progressive (traveling) wave with steepness \(\approx{}1/7\) are not correctly +captured by the model. \begin{figure} \centering