commit 97ab410a7755da48d9b24f72a5f7e358f0b3042d
parent 422847b5264440e37dd203ee63a1567837b90d49
Author: Ivan Gankevich <igankevich@ya.ru>
Date: Sun, 31 Mar 2019 11:45:41 +0300
Table.
Diffstat:
2 files changed, 47 insertions(+), 2 deletions(-)
diff --git a/Makefile b/Makefile
@@ -11,6 +11,7 @@ FLAGS = \
NAME = iccsa-19-vtestbed
+build/$(NAME).pdf: build
build/$(NAME).pdf: main.tex
build/$(NAME).pdf: build/sections.eps
build/$(NAME).pdf: build/bow.eps
diff --git a/main.tex b/main.tex
@@ -4,6 +4,7 @@
\usepackage{booktabs}
\usepackage{graphicx}
\usepackage{url}
+\usepackage{multirow}
\setlength{\tabcolsep}{4pt}
\begin{document}
@@ -34,12 +35,21 @@ Ivan Petriakov
\begin{abstract}
-
-
+Initially, digital ship hull form geometric model is assumed to maintain
+continuity in solving traditional ship theory problems, ship hydromechanics and
+seaworthiness in severe storm waves conditions. In the research reported here
+we consider using a table of plaza ordinates (transversal projection of frames)
+supplemented with description of sterns as a means of describing digital
+geometric model. This description allows for later addition of compartments,
+appendages and superstructures. These more complicated ship structures and
+their characteristics (e.g. ship compartments and superstructures are
+characterised by template-based modeling) are added to initial ship hull model
+in separate files from the working directory of a particular experiment.
\keywords{%
Ship lines \and
ship blueprint \and
+ship theory \and
ship design \and
ship hydromechanics \and
storm seakeeping \and
@@ -55,6 +65,40 @@ IGES.
\section{Methods}
+\subsection{...}
+
+\begin{table}
+ \centering
+ \begin{tabular}{p{1cm}p{1cm}p{8cm}}
+ \toprule
+ \multicolumn{3}{l}{1. Technical vessel description (comments: \texttt{//}
+ or \texttt{;}} \\
+ \multicolumn{3}{l}{2. Format magic number (30) and hull model name in
+ angle brackets \texttt{<...>}.} \\
+ \multicolumn{3}{l}{3. The number of frames and middle frame number.} \\
+ \multicolumn{3}{l}{4. Hull dimensions (length, beam, draft).} \\
+ \addlinespace
+ \multirow{5}{*}{\rotatebox[origin=c]{90}{\parbox[t]{2.9cm}{\centering{}The
+ number of points on a curve}}} & \multicolumn{2}{l}{5. \(X(z)\)~---
+ sternpost contour abcissas as a function of applicates.} \\
+ & \multicolumn{2}{l}{6. \(Y(z)\)~--- transom width ordinates as a
+ function of applicates.} \\
+ \addlinespace
+ & \rotatebox[origin=c]{90}{\parbox[t]{1.4cm}{\centering{}Frame abscissas}} & 7.
+ \(Y(z)\)~--- frame curves as functions of
+ applicates of general hull line. \\
+ \addlinespace
+ & \multicolumn{2}{l}{8. \(Y(z)\)~--- bulbous bow width ordinates as a
+ function of applicates.} \\
+ & \multicolumn{2}{l}{9. \(X(z)\)~--- stern contour abscissas as a
+ function of applicates.} \\
+ \addlinespace
+ \multicolumn{3}{l}{10. Design characteristics (displacement, wetted
+ surface, volume ratio).} \\
+ \bottomrule
+ \end{tabular}
+\end{table}
+
\subsection{Triangulation of a ship hull given by a collection of curves}
In the original programme~\cite{hull2010} that visualises ship lines and