iccsa-19-vessel

git clone https://git.igankevich.com/iccsa-19-vessel.git
Log | Files | Refs

commit 97ab410a7755da48d9b24f72a5f7e358f0b3042d
parent 422847b5264440e37dd203ee63a1567837b90d49
Author: Ivan Gankevich <igankevich@ya.ru>
Date:   Sun, 31 Mar 2019 11:45:41 +0300

Table.

Diffstat:
Makefile | 1+
main.tex | 48++++++++++++++++++++++++++++++++++++++++++++++--
2 files changed, 47 insertions(+), 2 deletions(-)

diff --git a/Makefile b/Makefile @@ -11,6 +11,7 @@ FLAGS = \ NAME = iccsa-19-vtestbed +build/$(NAME).pdf: build build/$(NAME).pdf: main.tex build/$(NAME).pdf: build/sections.eps build/$(NAME).pdf: build/bow.eps diff --git a/main.tex b/main.tex @@ -4,6 +4,7 @@ \usepackage{booktabs} \usepackage{graphicx} \usepackage{url} +\usepackage{multirow} \setlength{\tabcolsep}{4pt} \begin{document} @@ -34,12 +35,21 @@ Ivan Petriakov \begin{abstract} - - +Initially, digital ship hull form geometric model is assumed to maintain +continuity in solving traditional ship theory problems, ship hydromechanics and +seaworthiness in severe storm waves conditions. In the research reported here +we consider using a table of plaza ordinates (transversal projection of frames) +supplemented with description of sterns as a means of describing digital +geometric model. This description allows for later addition of compartments, +appendages and superstructures. These more complicated ship structures and +their characteristics (e.g. ship compartments and superstructures are +characterised by template-based modeling) are added to initial ship hull model +in separate files from the working directory of a particular experiment. \keywords{% Ship lines \and ship blueprint \and +ship theory \and ship design \and ship hydromechanics \and storm seakeeping \and @@ -55,6 +65,40 @@ IGES. \section{Methods} +\subsection{...} + +\begin{table} + \centering + \begin{tabular}{p{1cm}p{1cm}p{8cm}} + \toprule + \multicolumn{3}{l}{1. Technical vessel description (comments: \texttt{//} + or \texttt{;}} \\ + \multicolumn{3}{l}{2. Format magic number (30) and hull model name in + angle brackets \texttt{<...>}.} \\ + \multicolumn{3}{l}{3. The number of frames and middle frame number.} \\ + \multicolumn{3}{l}{4. Hull dimensions (length, beam, draft).} \\ + \addlinespace + \multirow{5}{*}{\rotatebox[origin=c]{90}{\parbox[t]{2.9cm}{\centering{}The + number of points on a curve}}} & \multicolumn{2}{l}{5. \(X(z)\)~--- + sternpost contour abcissas as a function of applicates.} \\ + & \multicolumn{2}{l}{6. \(Y(z)\)~--- transom width ordinates as a + function of applicates.} \\ + \addlinespace + & \rotatebox[origin=c]{90}{\parbox[t]{1.4cm}{\centering{}Frame abscissas}} & 7. + \(Y(z)\)~--- frame curves as functions of + applicates of general hull line. \\ + \addlinespace + & \multicolumn{2}{l}{8. \(Y(z)\)~--- bulbous bow width ordinates as a + function of applicates.} \\ + & \multicolumn{2}{l}{9. \(X(z)\)~--- stern contour abscissas as a + function of applicates.} \\ + \addlinespace + \multicolumn{3}{l}{10. Design characteristics (displacement, wetted + surface, volume ratio).} \\ + \bottomrule + \end{tabular} +\end{table} + \subsection{Triangulation of a ship hull given by a collection of curves} In the original programme~\cite{hull2010} that visualises ship lines and