arma-thesis

git clone https://git.igankevich.com/arma-thesis.git
Log | Files | Refs | LICENSE

commit bf003f2cd11b230948ccd480e0146ea6edf6f924
parent f0b6a44a07d725beddcf8395b9c21273a4146873
Author: Ivan Gankevich <igankevich@ya.ru>
Date:   Mon, 12 Jun 2017 21:55:42 +0300

Add more data from the experiments. Write discussion.

Diffstat:
R/nonlinear.R | 17+++++++++++++++++
arma-thesis.org | 1247+++++++++++++++++++++++++++++++++++++------------------------------------------
bib/refs.bib | 11+++++++++++
3 files changed, 606 insertions(+), 669 deletions(-)

diff --git a/R/nonlinear.R b/R/nonlinear.R @@ -42,3 +42,20 @@ arma.plot_nonlinear <- function (dirname, args) { lty=paste(args$linetypes) ) } + +arma.wave_height <- function (realisation) { + sqrt(2*pi*var(realisation)) +} + +arma.print_wave_height <- function (dirname) { + zeta_none <- read.csv(file.path(dirname, 'zeta-none.csv')) + zeta_gcs <- read.csv(file.path(dirname, 'zeta-gramcharlier.csv')) + zeta_sn <- read.csv(file.path(dirname, 'zeta-skewnormal.csv')) + library('ascii') + options(asciiType='org') + data.frame( + h1=arma.wave_height(zeta_none$z), + h2=arma.wave_height(zeta_gcs$z), + h3=arma.wave_height(zeta_sn$z) + ) +} diff --git a/arma-thesis.org b/arma-thesis.org @@ -589,443 +589,163 @@ MA model = order=(20,10,10),acf.shape=(20,10,10),algorithm Velocity potential solver name = N4arma8velocity21High_amplitude_solverIdEE Velocity potential solver = wnmax=from (0,0) to (0,0.25) npoints (2,2),depth=12,domain=from (10,-12) to (10,3) npoints (1,128) NIT transform = none -ACF variance = 5 -fixed_point_iteration:Iteration=0, var_wn=2.70831 -fixed_point_iteration:Iteration=1, var_wn=1.93791 -fixed_point_iteration:Iteration=2, var_wn=1.54801 -fixed_point_iteration:Iteration=3, var_wn=1.31202 -fixed_point_iteration:Iteration=4, var_wn=1.15328 -fixed_point_iteration:Iteration=5, var_wn=1.0386 -fixed_point_iteration:Iteration=6, var_wn=0.951442 -fixed_point_iteration:Iteration=7, var_wn=0.882674 -fixed_point_iteration:Iteration=8, var_wn=0.82688 -fixed_point_iteration:Iteration=9, var_wn=0.780623 -fixed_point_iteration:Iteration=10, var_wn=0.74161 -fixed_point_iteration:Iteration=11, var_wn=0.708244 -fixed_point_iteration:Iteration=12, var_wn=0.679374 -fixed_point_iteration:Iteration=13, var_wn=0.654145 -fixed_point_iteration:Iteration=14, var_wn=0.63191 -fixed_point_iteration:Iteration=15, var_wn=0.612168 -fixed_point_iteration:Iteration=16, var_wn=0.594523 -fixed_point_iteration:Iteration=17, var_wn=0.578663 -fixed_point_iteration:Iteration=18, var_wn=0.564333 -fixed_point_iteration:Iteration=19, var_wn=0.551325 -fixed_point_iteration:Iteration=20, var_wn=0.539469 -fixed_point_iteration:Iteration=21, var_wn=0.528623 -fixed_point_iteration:Iteration=22, var_wn=0.518666 -fixed_point_iteration:Iteration=23, var_wn=0.509497 -fixed_point_iteration:Iteration=24, var_wn=0.50103 -fixed_point_iteration:Iteration=25, var_wn=0.493191 -fixed_point_iteration:Iteration=26, var_wn=0.485915 -fixed_point_iteration:Iteration=27, var_wn=0.479148 -fixed_point_iteration:Iteration=28, var_wn=0.472841 -fixed_point_iteration:Iteration=29, var_wn=0.466951 -fixed_point_iteration:Iteration=30, var_wn=0.461442 -fixed_point_iteration:Iteration=31, var_wn=0.456279 -fixed_point_iteration:Iteration=32, var_wn=0.451435 -fixed_point_iteration:Iteration=33, var_wn=0.446882 -fixed_point_iteration:Iteration=34, var_wn=0.442597 -fixed_point_iteration:Iteration=35, var_wn=0.43856 -fixed_point_iteration:Iteration=36, var_wn=0.434752 -fixed_point_iteration:Iteration=37, var_wn=0.431155 -fixed_point_iteration:Iteration=38, var_wn=0.427755 -fixed_point_iteration:Iteration=39, var_wn=0.424537 -fixed_point_iteration:Iteration=40, var_wn=0.42149 -fixed_point_iteration:Iteration=41, var_wn=0.4186 -fixed_point_iteration:Iteration=42, var_wn=0.415859 -fixed_point_iteration:Iteration=43, var_wn=0.413256 -fixed_point_iteration:Iteration=44, var_wn=0.410782 -fixed_point_iteration:Iteration=45, var_wn=0.408429 -fixed_point_iteration:Iteration=46, var_wn=0.406191 -fixed_point_iteration:Iteration=47, var_wn=0.404059 -fixed_point_iteration:Iteration=48, var_wn=0.402028 -fixed_point_iteration:Iteration=49, var_wn=0.400092 -fixed_point_iteration:Iteration=50, var_wn=0.398246 -fixed_point_iteration:Iteration=51, var_wn=0.396483 -fixed_point_iteration:Iteration=52, var_wn=0.3948 -fixed_point_iteration:Iteration=53, var_wn=0.393193 -fixed_point_iteration:Iteration=54, var_wn=0.391656 -fixed_point_iteration:Iteration=55, var_wn=0.390187 -fixed_point_iteration:Iteration=56, var_wn=0.388782 -fixed_point_iteration:Iteration=57, var_wn=0.387438 -fixed_point_iteration:Iteration=58, var_wn=0.386151 -fixed_point_iteration:Iteration=59, var_wn=0.384918 -fixed_point_iteration:Iteration=60, var_wn=0.383738 -fixed_point_iteration:Iteration=61, var_wn=0.382606 -fixed_point_iteration:Iteration=62, var_wn=0.381522 -fixed_point_iteration:Iteration=63, var_wn=0.380482 -fixed_point_iteration:Iteration=64, var_wn=0.379485 -fixed_point_iteration:Iteration=65, var_wn=0.378528 -fixed_point_iteration:Iteration=66, var_wn=0.37761 -fixed_point_iteration:Iteration=67, var_wn=0.376728 -fixed_point_iteration:Iteration=68, var_wn=0.375882 -fixed_point_iteration:Iteration=69, var_wn=0.37507 -fixed_point_iteration:Iteration=70, var_wn=0.374289 -fixed_point_iteration:Iteration=71, var_wn=0.373539 -fixed_point_iteration:Iteration=72, var_wn=0.372818 -fixed_point_iteration:Iteration=73, var_wn=0.372126 -fixed_point_iteration:Iteration=74, var_wn=0.37146 -fixed_point_iteration:Iteration=75, var_wn=0.370819 -fixed_point_iteration:Iteration=76, var_wn=0.370204 -fixed_point_iteration:Iteration=77, var_wn=0.369611 -fixed_point_iteration:Iteration=78, var_wn=0.369042 -fixed_point_iteration:Iteration=79, var_wn=0.368493 -fixed_point_iteration:Iteration=80, var_wn=0.367966 -fixed_point_iteration:Iteration=81, var_wn=0.367458 -fixed_point_iteration:Iteration=82, var_wn=0.366969 -fixed_point_iteration:Iteration=83, var_wn=0.366499 -fixed_point_iteration:Iteration=84, var_wn=0.366046 -fixed_point_iteration:Iteration=85, var_wn=0.365609 -fixed_point_iteration:Iteration=86, var_wn=0.365189 -fixed_point_iteration:Iteration=87, var_wn=0.364785 -fixed_point_iteration:Iteration=88, var_wn=0.364395 -fixed_point_iteration:Iteration=89, var_wn=0.364019 -fixed_point_iteration:Iteration=90, var_wn=0.363657 -fixed_point_iteration:Iteration=91, var_wn=0.363309 -fixed_point_iteration:Iteration=92, var_wn=0.362973 -fixed_point_iteration:Iteration=93, var_wn=0.362649 -fixed_point_iteration:Iteration=94, var_wn=0.362337 -fixed_point_iteration:Iteration=95, var_wn=0.362036 -fixed_point_iteration:Iteration=96, var_wn=0.361746 -fixed_point_iteration:Iteration=97, var_wn=0.361466 -fixed_point_iteration:Iteration=98, var_wn=0.361196 -fixed_point_iteration:Iteration=99, var_wn=0.360936 -fixed_point_iteration:Iteration=100, var_wn=0.360686 -fixed_point_iteration:Iteration=101, var_wn=0.360444 -fixed_point_iteration:Iteration=102, var_wn=0.360211 -fixed_point_iteration:Iteration=103, var_wn=0.359986 -fixed_point_iteration:Iteration=104, var_wn=0.359769 -fixed_point_iteration:Iteration=105, var_wn=0.35956 -fixed_point_iteration:Iteration=106, var_wn=0.359358 -fixed_point_iteration:Iteration=107, var_wn=0.359163 -fixed_point_iteration:Iteration=108, var_wn=0.358975 -fixed_point_iteration:Iteration=109, var_wn=0.358794 -fixed_point_iteration:Iteration=110, var_wn=0.358619 -fixed_point_iteration:Iteration=111, var_wn=0.35845 -fixed_point_iteration:Iteration=112, var_wn=0.358287 -fixed_point_iteration:Iteration=113, var_wn=0.35813 -fixed_point_iteration:Iteration=114, var_wn=0.357979 -fixed_point_iteration:Iteration=115, var_wn=0.357832 -fixed_point_iteration:Iteration=116, var_wn=0.357691 -fixed_point_iteration:Iteration=117, var_wn=0.357555 -fixed_point_iteration:Iteration=118, var_wn=0.357423 -fixed_point_iteration:Iteration=119, var_wn=0.357296 -fixed_point_iteration:Iteration=120, var_wn=0.357173 -fixed_point_iteration:Iteration=121, var_wn=0.357055 -fixed_point_iteration:Iteration=122, var_wn=0.356941 -fixed_point_iteration:Iteration=123, var_wn=0.35683 -fixed_point_iteration:Iteration=124, var_wn=0.356724 -fixed_point_iteration:Iteration=125, var_wn=0.356621 -fixed_point_iteration:Iteration=126, var_wn=0.356522 -fixed_point_iteration:Iteration=127, var_wn=0.356426 -fixed_point_iteration:Iteration=128, var_wn=0.356334 -fixed_point_iteration:Iteration=129, var_wn=0.356244 -fixed_point_iteration:Iteration=130, var_wn=0.356158 -fixed_point_iteration:Iteration=131, var_wn=0.356075 -fixed_point_iteration:Iteration=132, var_wn=0.355994 -fixed_point_iteration:Iteration=133, var_wn=0.355917 -fixed_point_iteration:Iteration=134, var_wn=0.355842 -fixed_point_iteration:Iteration=135, var_wn=0.355769 -fixed_point_iteration:Iteration=136, var_wn=0.355699 -fixed_point_iteration:Iteration=137, var_wn=0.355632 -fixed_point_iteration:Iteration=138, var_wn=0.355566 -fixed_point_iteration:Iteration=139, var_wn=0.355504 -fixed_point_iteration:Iteration=140, var_wn=0.355443 -fixed_point_iteration:Iteration=141, var_wn=0.355384 -fixed_point_iteration:Iteration=142, var_wn=0.355327 -fixed_point_iteration:Iteration=143, var_wn=0.355272 -fixed_point_iteration:Iteration=144, var_wn=0.35522 -fixed_point_iteration:Iteration=145, var_wn=0.355168 -fixed_point_iteration:Iteration=146, var_wn=0.355119 -fixed_point_iteration:Iteration=147, var_wn=0.355071 -fixed_point_iteration:Iteration=148, var_wn=0.355025 -fixed_point_iteration:Iteration=149, var_wn=0.354981 -fixed_point_iteration:Iteration=150, var_wn=0.354938 -fixed_point_iteration:Iteration=151, var_wn=0.354896 -fixed_point_iteration:Iteration=152, var_wn=0.354856 -fixed_point_iteration:Iteration=153, var_wn=0.354818 -fixed_point_iteration:Iteration=154, var_wn=0.35478 -fixed_point_iteration:Iteration=155, var_wn=0.354744 -fixed_point_iteration:Iteration=156, var_wn=0.354709 -fixed_point_iteration:Iteration=157, var_wn=0.354676 -fixed_point_iteration:Iteration=158, var_wn=0.354643 -fixed_point_iteration:Iteration=159, var_wn=0.354612 -fixed_point_iteration:Iteration=160, var_wn=0.354581 -fixed_point_iteration:Iteration=161, var_wn=0.354552 -fixed_point_iteration:Iteration=162, var_wn=0.354523 -fixed_point_iteration:Iteration=163, var_wn=0.354496 -fixed_point_iteration:Iteration=164, var_wn=0.35447 -fixed_point_iteration:Iteration=165, var_wn=0.354444 -fixed_point_iteration:Iteration=166, var_wn=0.354419 -fixed_point_iteration:Iteration=167, var_wn=0.354396 -fixed_point_iteration:Iteration=168, var_wn=0.354373 -fixed_point_iteration:Iteration=169, var_wn=0.35435 -fixed_point_iteration:Iteration=170, var_wn=0.354329 -fixed_point_iteration:Iteration=171, var_wn=0.354308 -fixed_point_iteration:Iteration=172, var_wn=0.354288 -fixed_point_iteration:Iteration=173, var_wn=0.354269 -fixed_point_iteration:Iteration=174, var_wn=0.35425 -fixed_point_iteration:Iteration=175, var_wn=0.354232 -fixed_point_iteration:Iteration=176, var_wn=0.354214 -fixed_point_iteration:Iteration=177, var_wn=0.354197 -fixed_point_iteration:Iteration=178, var_wn=0.354181 -fixed_point_iteration:Iteration=179, var_wn=0.354165 -fixed_point_iteration:Iteration=180, var_wn=0.35415 -fixed_point_iteration:Iteration=181, var_wn=0.354135 -fixed_point_iteration:Iteration=182, var_wn=0.354121 -fixed_point_iteration:Iteration=183, var_wn=0.354107 -fixed_point_iteration:Iteration=184, var_wn=0.354094 -fixed_point_iteration:Iteration=185, var_wn=0.354081 -fixed_point_iteration:Iteration=186, var_wn=0.354069 -fixed_point_iteration:Iteration=187, var_wn=0.354057 -fixed_point_iteration:Iteration=188, var_wn=0.354046 -fixed_point_iteration:Iteration=189, var_wn=0.354034 -fixed_point_iteration:Iteration=190, var_wn=0.354024 -fixed_point_iteration:Iteration=191, var_wn=0.354013 -fixed_point_iteration:Iteration=192, var_wn=0.354003 -fixed_point_iteration:Iteration=193, var_wn=0.353993 -WN variance = 0.353993 -Partition size = (34,13,13) - Finished part [1/96] Finished part [2/96] Finished part [3/96] Finished part [4/96] Finished part [5/96] Finished part [6/96] Finished part [7/96] Finished part [8/96] Finished part [9/96] Finished part [10/96] Finished part [11/96] Finished part [12/96] Finished part [13/96] Finished part [14/96] Finished part [15/96] Finished part [16/96] Finished part [17/96] Finished part [18/96] Finished part [19/96] Finished part [20/96] Finished part [21/96] Finished part [22/96] Finished part [23/96] Finished part [24/96] Finished part [25/96] Finished part [26/96] Finished part [27/96] Finished part [28/96] Finished part [29/96] Finished part [30/96] Finished part [31/96] Finished part [32/96] Finished part [33/96] Finished part [34/96] Finished part [35/96] Finished part [36/96] Finished part [37/96] Finished part [38/96] Finished part [39/96] Finished part [40/96] Finished part [41/96] Finished part [42/96] Finished part [43/96] Finished part [44/96] Finished part [45/96] Finished part [46/96] Finished part [47/96] Finished part [48/96] Finished part [49/96] Finished part [50/96] Finished part [51/96] Finished part [52/96] Finished part [53/96] Finished part [54/96] Finished part [55/96] Finished part [56/96] Finished part [57/96] Finished part [58/96] Finished part [59/96] Finished part [60/96] Finished part [61/96] Finished part [62/96] Finished part [63/96] Finished part [64/96] Finished part [65/96] Finished part [66/96] Finished part [67/96] Finished part [68/96] Finished part [69/96] Finished part [70/96] Finished part [71/96] Finished part [72/96] Finished part [73/96] Finished part [74/96] Finished part [75/96] Finished part [76/96] Finished part [77/96] Finished part [78/96] Finished part [79/96] Finished part [80/96] Finished part [81/96] Finished part [82/96] Finished part [83/96] Finished part [84/96] Finished part [85/96] Finished part [86/96] Finished part [87/96] Finished part [88/96] Finished part [89/96] Finished part [90/96] Finished part [91/96] Finished part [92/96] Finished part [93/96] Finished part [94/96] Finished part [95/96] Finished part [96/96] -prfl dev_to_host_copy = 0us -prfl fft = 67193us -prfl second_function = 1789us -prfl window_function = 646922us -'zeta.csv' -> 'zeta-none.csv' -Input file = /home/igankevich/workspace/arma-thesis/config/nit-propagating-gramcharlier -Output grid size = (200,40,40) -Output grid patch size = (1,1,1) -Model = MA -Verification scheme = manual -MA model = order=(20,10,10),acf.shape=(20,10,10),algorithm=fixed_point_iteration -Velocity potential solver name = N4arma8velocity21High_amplitude_solverIdEE -Velocity potential solver = wnmax=from (0,0) to (0,0.25) npoints (2,2),depth=12,domain=from (10,-12) to (10,3) npoints (1,128) -NIT transform = dist=gram_charlier,skewness=2.25,kurtosis=0.4,interpolation_nodes=100,interpolation_order=12,gram_charlier_order=20 -err = 0.901016 -err = 0.633282 -err = 0.627391 -err = 2.05244 -err = 2.73649 -err = 40.2987 -err = 46.5501 -err = 365.031 -err = 404.844 -err = 2334.7 -err = 2527.68 -err = 11727.1 -err = 12493.7 -err = 49080.1 -err = 51693.4 -err = 177912 -err = 185800 -err = 573975 -err = 595541 -err = 1.68124e+06 -trim = 3 -ACF variance = 5 -fixed_point_iteration:Iteration=0, var_wn=2.70831 -fixed_point_iteration:Iteration=1, var_wn=1.93791 -fixed_point_iteration:Iteration=2, var_wn=1.54801 -fixed_point_iteration:Iteration=3, var_wn=1.31202 -fixed_point_iteration:Iteration=4, var_wn=1.15328 -fixed_point_iteration:Iteration=5, var_wn=1.0386 -fixed_point_iteration:Iteration=6, var_wn=0.951442 -fixed_point_iteration:Iteration=7, var_wn=0.882674 -fixed_point_iteration:Iteration=8, var_wn=0.82688 -fixed_point_iteration:Iteration=9, var_wn=0.780623 -fixed_point_iteration:Iteration=10, var_wn=0.74161 -fixed_point_iteration:Iteration=11, var_wn=0.708244 -fixed_point_iteration:Iteration=12, var_wn=0.679374 -fixed_point_iteration:Iteration=13, var_wn=0.654145 -fixed_point_iteration:Iteration=14, var_wn=0.63191 -fixed_point_iteration:Iteration=15, var_wn=0.612168 -fixed_point_iteration:Iteration=16, var_wn=0.594523 -fixed_point_iteration:Iteration=17, var_wn=0.578663 -fixed_point_iteration:Iteration=18, var_wn=0.564333 -fixed_point_iteration:Iteration=19, var_wn=0.551325 -fixed_point_iteration:Iteration=20, var_wn=0.539469 -fixed_point_iteration:Iteration=21, var_wn=0.528623 -fixed_point_iteration:Iteration=22, var_wn=0.518666 -fixed_point_iteration:Iteration=23, var_wn=0.509497 -fixed_point_iteration:Iteration=24, var_wn=0.50103 -fixed_point_iteration:Iteration=25, var_wn=0.493191 -fixed_point_iteration:Iteration=26, var_wn=0.485915 -fixed_point_iteration:Iteration=27, var_wn=0.479148 -fixed_point_iteration:Iteration=28, var_wn=0.472841 -fixed_point_iteration:Iteration=29, var_wn=0.466951 -fixed_point_iteration:Iteration=30, var_wn=0.461442 -fixed_point_iteration:Iteration=31, var_wn=0.456279 -fixed_point_iteration:Iteration=32, var_wn=0.451435 -fixed_point_iteration:Iteration=33, var_wn=0.446882 -fixed_point_iteration:Iteration=34, var_wn=0.442597 -fixed_point_iteration:Iteration=35, var_wn=0.43856 -fixed_point_iteration:Iteration=36, var_wn=0.434752 -fixed_point_iteration:Iteration=37, var_wn=0.431155 -fixed_point_iteration:Iteration=38, var_wn=0.427755 -fixed_point_iteration:Iteration=39, var_wn=0.424537 -fixed_point_iteration:Iteration=40, var_wn=0.42149 -fixed_point_iteration:Iteration=41, var_wn=0.4186 -fixed_point_iteration:Iteration=42, var_wn=0.415859 -fixed_point_iteration:Iteration=43, var_wn=0.413256 -fixed_point_iteration:Iteration=44, var_wn=0.410782 -fixed_point_iteration:Iteration=45, var_wn=0.408429 -fixed_point_iteration:Iteration=46, var_wn=0.406191 -fixed_point_iteration:Iteration=47, var_wn=0.404059 -fixed_point_iteration:Iteration=48, var_wn=0.402028 -fixed_point_iteration:Iteration=49, var_wn=0.400092 -fixed_point_iteration:Iteration=50, var_wn=0.398246 -fixed_point_iteration:Iteration=51, var_wn=0.396483 -fixed_point_iteration:Iteration=52, var_wn=0.3948 -fixed_point_iteration:Iteration=53, var_wn=0.393193 -fixed_point_iteration:Iteration=54, var_wn=0.391656 -fixed_point_iteration:Iteration=55, var_wn=0.390187 -fixed_point_iteration:Iteration=56, var_wn=0.388782 -fixed_point_iteration:Iteration=57, var_wn=0.387438 -fixed_point_iteration:Iteration=58, var_wn=0.386151 -fixed_point_iteration:Iteration=59, var_wn=0.384918 -fixed_point_iteration:Iteration=60, var_wn=0.383738 -fixed_point_iteration:Iteration=61, var_wn=0.382606 -fixed_point_iteration:Iteration=62, var_wn=0.381522 -fixed_point_iteration:Iteration=63, var_wn=0.380482 -fixed_point_iteration:Iteration=64, var_wn=0.379485 -fixed_point_iteration:Iteration=65, var_wn=0.378528 -fixed_point_iteration:Iteration=66, var_wn=0.37761 -fixed_point_iteration:Iteration=67, var_wn=0.376728 -fixed_point_iteration:Iteration=68, var_wn=0.375882 -fixed_point_iteration:Iteration=69, var_wn=0.37507 -fixed_point_iteration:Iteration=70, var_wn=0.374289 -fixed_point_iteration:Iteration=71, var_wn=0.373539 -fixed_point_iteration:Iteration=72, var_wn=0.372818 -fixed_point_iteration:Iteration=73, var_wn=0.372126 -fixed_point_iteration:Iteration=74, var_wn=0.37146 -fixed_point_iteration:Iteration=75, var_wn=0.370819 -fixed_point_iteration:Iteration=76, var_wn=0.370204 -fixed_point_iteration:Iteration=77, var_wn=0.369611 -fixed_point_iteration:Iteration=78, var_wn=0.369042 -fixed_point_iteration:Iteration=79, var_wn=0.368493 -fixed_point_iteration:Iteration=80, var_wn=0.367966 -fixed_point_iteration:Iteration=81, var_wn=0.367458 -fixed_point_iteration:Iteration=82, var_wn=0.366969 -fixed_point_iteration:Iteration=83, var_wn=0.366499 -fixed_point_iteration:Iteration=84, var_wn=0.366046 -fixed_point_iteration:Iteration=85, var_wn=0.365609 -fixed_point_iteration:Iteration=86, var_wn=0.365189 -fixed_point_iteration:Iteration=87, var_wn=0.364785 -fixed_point_iteration:Iteration=88, var_wn=0.364395 -fixed_point_iteration:Iteration=89, var_wn=0.364019 -fixed_point_iteration:Iteration=90, var_wn=0.363657 -fixed_point_iteration:Iteration=91, var_wn=0.363309 -fixed_point_iteration:Iteration=92, var_wn=0.362973 -fixed_point_iteration:Iteration=93, var_wn=0.362649 -fixed_point_iteration:Iteration=94, var_wn=0.362337 -fixed_point_iteration:Iteration=95, var_wn=0.362036 -fixed_point_iteration:Iteration=96, var_wn=0.361746 -fixed_point_iteration:Iteration=97, var_wn=0.361466 -fixed_point_iteration:Iteration=98, var_wn=0.361196 -fixed_point_iteration:Iteration=99, var_wn=0.360936 -fixed_point_iteration:Iteration=100, var_wn=0.360686 -fixed_point_iteration:Iteration=101, var_wn=0.360444 -fixed_point_iteration:Iteration=102, var_wn=0.360211 -fixed_point_iteration:Iteration=103, var_wn=0.359986 -fixed_point_iteration:Iteration=104, var_wn=0.359769 -fixed_point_iteration:Iteration=105, var_wn=0.35956 -fixed_point_iteration:Iteration=106, var_wn=0.359358 -fixed_point_iteration:Iteration=107, var_wn=0.359163 -fixed_point_iteration:Iteration=108, var_wn=0.358975 -fixed_point_iteration:Iteration=109, var_wn=0.358794 -fixed_point_iteration:Iteration=110, var_wn=0.358619 -fixed_point_iteration:Iteration=111, var_wn=0.35845 -fixed_point_iteration:Iteration=112, var_wn=0.358287 -fixed_point_iteration:Iteration=113, var_wn=0.35813 -fixed_point_iteration:Iteration=114, var_wn=0.357979 -fixed_point_iteration:Iteration=115, var_wn=0.357832 -fixed_point_iteration:Iteration=116, var_wn=0.357691 -fixed_point_iteration:Iteration=117, var_wn=0.357555 -fixed_point_iteration:Iteration=118, var_wn=0.357423 -fixed_point_iteration:Iteration=119, var_wn=0.357296 -fixed_point_iteration:Iteration=120, var_wn=0.357173 -fixed_point_iteration:Iteration=121, var_wn=0.357055 -fixed_point_iteration:Iteration=122, var_wn=0.356941 -fixed_point_iteration:Iteration=123, var_wn=0.35683 -fixed_point_iteration:Iteration=124, var_wn=0.356724 -fixed_point_iteration:Iteration=125, var_wn=0.356621 -fixed_point_iteration:Iteration=126, var_wn=0.356522 -fixed_point_iteration:Iteration=127, var_wn=0.356426 -fixed_point_iteration:Iteration=128, var_wn=0.356334 -fixed_point_iteration:Iteration=129, var_wn=0.356244 -fixed_point_iteration:Iteration=130, var_wn=0.356158 -fixed_point_iteration:Iteration=131, var_wn=0.356075 -fixed_point_iteration:Iteration=132, var_wn=0.355994 -fixed_point_iteration:Iteration=133, var_wn=0.355917 -fixed_point_iteration:Iteration=134, var_wn=0.355842 -fixed_point_iteration:Iteration=135, var_wn=0.355769 -fixed_point_iteration:Iteration=136, var_wn=0.355699 -fixed_point_iteration:Iteration=137, var_wn=0.355632 -fixed_point_iteration:Iteration=138, var_wn=0.355566 -fixed_point_iteration:Iteration=139, var_wn=0.355504 -fixed_point_iteration:Iteration=140, var_wn=0.355443 -fixed_point_iteration:Iteration=141, var_wn=0.355384 -fixed_point_iteration:Iteration=142, var_wn=0.355327 -fixed_point_iteration:Iteration=143, var_wn=0.355272 -fixed_point_iteration:Iteration=144, var_wn=0.35522 -fixed_point_iteration:Iteration=145, var_wn=0.355168 -fixed_point_iteration:Iteration=146, var_wn=0.355119 -fixed_point_iteration:Iteration=147, var_wn=0.355071 -fixed_point_iteration:Iteration=148, var_wn=0.355025 -fixed_point_iteration:Iteration=149, var_wn=0.354981 -fixed_point_iteration:Iteration=150, var_wn=0.354938 -fixed_point_iteration:Iteration=151, var_wn=0.354896 -fixed_point_iteration:Iteration=152, var_wn=0.354856 -fixed_point_iteration:Iteration=153, var_wn=0.354818 -fixed_point_iteration:Iteration=154, var_wn=0.35478 -fixed_point_iteration:Iteration=155, var_wn=0.354744 -fixed_point_iteration:Iteration=156, var_wn=0.354709 -fixed_point_iteration:Iteration=157, var_wn=0.354676 -fixed_point_iteration:Iteration=158, var_wn=0.354643 -fixed_point_iteration:Iteration=159, var_wn=0.354612 -fixed_point_iteration:Iteration=160, var_wn=0.354581 -fixed_point_iteration:Iteration=161, var_wn=0.354552 -fixed_point_iteration:Iteration=162, var_wn=0.354523 -fixed_point_iteration:Iteration=163, var_wn=0.354496 -fixed_point_iteration:Iteration=164, var_wn=0.35447 -fixed_point_iteration:Iteration=165, var_wn=0.354444 -fixed_point_iteration:Iteration=166, var_wn=0.354419 -fixed_point_iteration:Iteration=167, var_wn=0.354396 -fixed_point_iteration:Iteration=168, var_wn=0.354373 -fixed_point_iteration:Iteration=169, var_wn=0.35435 -fixed_point_iteration:Iteration=170, var_wn=0.354329 -fixed_point_iteration:Iteration=171, var_wn=0.354308 -fixed_point_iteration:Iteration=172, var_wn=0.354288 -fixed_point_iteration:Iteration=173, var_wn=0.354269 -fixed_point_iteration:Iteration=174, var_wn=0.35425 -fixed_point_iteration:Iteration=175, var_wn=0.354232 -fixed_point_iteration:Iteration=176, var_wn=0.354214 -fixed_point_iteration:Iteration=177, var_wn=0.354197 -fixed_point_iteration:Iteration=178, var_wn=0.354181 -fixed_point_iteration:Iteration=179, var_wn=0.354165 -fixed_point_iteration:Iteration=180, var_wn=0.35415 -fixed_point_iteration:Iteration=181, var_wn=0.354135 -fixed_point_iteration:Iteration=182, var_wn=0.354121 -fixed_point_iteration:Iteration=183, var_wn=0.354107 -fixed_point_iteration:Iteration=184, var_wn=0.354094 -fixed_point_iteration:Iteration=185, var_wn=0.354081 -fixed_point_iteration:Iteration=186, var_wn=0.354069 -fixed_point_iteration:Iteration=187, var_wn=0.354057 -fixed_point_iteration:Iteration=188, var_wn=0.354046 -fixed_point_iteration:Iteration=189, var_wn=0.354034 -fixed_point_iteration:Iteration=190, var_wn=0.354024 -fixed_point_iteration:Iteration=191, var_wn=0.354013 -fixed_point_iteration:Iteration=192, var_wn=0.354003 -fixed_point_iteration:Iteration=193, var_wn=0.353993 -WN variance = 0.353993 +ACF variance = 1 +fixed_point_iteration:Iteration=0, var_wn=0.541662 +fixed_point_iteration:Iteration=1, var_wn=0.387581 +fixed_point_iteration:Iteration=2, var_wn=0.309602 +fixed_point_iteration:Iteration=3, var_wn=0.262404 +fixed_point_iteration:Iteration=4, var_wn=0.230656 +fixed_point_iteration:Iteration=5, var_wn=0.207721 +fixed_point_iteration:Iteration=6, var_wn=0.190288 +fixed_point_iteration:Iteration=7, var_wn=0.176535 +fixed_point_iteration:Iteration=8, var_wn=0.165376 +fixed_point_iteration:Iteration=9, var_wn=0.156125 +fixed_point_iteration:Iteration=10, var_wn=0.148322 +fixed_point_iteration:Iteration=11, var_wn=0.141649 +fixed_point_iteration:Iteration=12, var_wn=0.135875 +fixed_point_iteration:Iteration=13, var_wn=0.130829 +fixed_point_iteration:Iteration=14, var_wn=0.126382 +fixed_point_iteration:Iteration=15, var_wn=0.122434 +fixed_point_iteration:Iteration=16, var_wn=0.118905 +fixed_point_iteration:Iteration=17, var_wn=0.115733 +fixed_point_iteration:Iteration=18, var_wn=0.112867 +fixed_point_iteration:Iteration=19, var_wn=0.110265 +fixed_point_iteration:Iteration=20, var_wn=0.107894 +fixed_point_iteration:Iteration=21, var_wn=0.105725 +fixed_point_iteration:Iteration=22, var_wn=0.103733 +fixed_point_iteration:Iteration=23, var_wn=0.101899 +fixed_point_iteration:Iteration=24, var_wn=0.100206 +fixed_point_iteration:Iteration=25, var_wn=0.0986382 +fixed_point_iteration:Iteration=26, var_wn=0.0971831 +fixed_point_iteration:Iteration=27, var_wn=0.0958297 +fixed_point_iteration:Iteration=28, var_wn=0.0945682 +fixed_point_iteration:Iteration=29, var_wn=0.0933903 +fixed_point_iteration:Iteration=30, var_wn=0.0922883 +fixed_point_iteration:Iteration=31, var_wn=0.0912558 +fixed_point_iteration:Iteration=32, var_wn=0.0902869 +fixed_point_iteration:Iteration=33, var_wn=0.0893763 +fixed_point_iteration:Iteration=34, var_wn=0.0885194 +fixed_point_iteration:Iteration=35, var_wn=0.087712 +fixed_point_iteration:Iteration=36, var_wn=0.0869503 +fixed_point_iteration:Iteration=37, var_wn=0.086231 +fixed_point_iteration:Iteration=38, var_wn=0.085551 +fixed_point_iteration:Iteration=39, var_wn=0.0849075 +fixed_point_iteration:Iteration=40, var_wn=0.0842979 +fixed_point_iteration:Iteration=41, var_wn=0.0837201 +fixed_point_iteration:Iteration=42, var_wn=0.0831718 +fixed_point_iteration:Iteration=43, var_wn=0.0826511 +fixed_point_iteration:Iteration=44, var_wn=0.0821564 +fixed_point_iteration:Iteration=45, var_wn=0.0816859 +fixed_point_iteration:Iteration=46, var_wn=0.0812382 +fixed_point_iteration:Iteration=47, var_wn=0.0808119 +fixed_point_iteration:Iteration=48, var_wn=0.0804057 +fixed_point_iteration:Iteration=49, var_wn=0.0800185 +fixed_point_iteration:Iteration=50, var_wn=0.0796491 +fixed_point_iteration:Iteration=51, var_wn=0.0792966 +fixed_point_iteration:Iteration=52, var_wn=0.07896 +fixed_point_iteration:Iteration=53, var_wn=0.0786385 +fixed_point_iteration:Iteration=54, var_wn=0.0783313 +fixed_point_iteration:Iteration=55, var_wn=0.0780375 +fixed_point_iteration:Iteration=56, var_wn=0.0777565 +fixed_point_iteration:Iteration=57, var_wn=0.0774875 +fixed_point_iteration:Iteration=58, var_wn=0.0772301 +fixed_point_iteration:Iteration=59, var_wn=0.0769836 +fixed_point_iteration:Iteration=60, var_wn=0.0767475 +fixed_point_iteration:Iteration=61, var_wn=0.0765213 +fixed_point_iteration:Iteration=62, var_wn=0.0763044 +fixed_point_iteration:Iteration=63, var_wn=0.0760964 +fixed_point_iteration:Iteration=64, var_wn=0.0758969 +fixed_point_iteration:Iteration=65, var_wn=0.0757056 +fixed_point_iteration:Iteration=66, var_wn=0.075522 +fixed_point_iteration:Iteration=67, var_wn=0.0753457 +fixed_point_iteration:Iteration=68, var_wn=0.0751764 +fixed_point_iteration:Iteration=69, var_wn=0.0750139 +fixed_point_iteration:Iteration=70, var_wn=0.0748578 +fixed_point_iteration:Iteration=71, var_wn=0.0747078 +fixed_point_iteration:Iteration=72, var_wn=0.0745637 +fixed_point_iteration:Iteration=73, var_wn=0.0744251 +fixed_point_iteration:Iteration=74, var_wn=0.0742919 +fixed_point_iteration:Iteration=75, var_wn=0.0741639 +fixed_point_iteration:Iteration=76, var_wn=0.0740407 +fixed_point_iteration:Iteration=77, var_wn=0.0739223 +fixed_point_iteration:Iteration=78, var_wn=0.0738083 +fixed_point_iteration:Iteration=79, var_wn=0.0736987 +fixed_point_iteration:Iteration=80, var_wn=0.0735932 +fixed_point_iteration:Iteration=81, var_wn=0.0734916 +fixed_point_iteration:Iteration=82, var_wn=0.0733939 +fixed_point_iteration:Iteration=83, var_wn=0.0732998 +fixed_point_iteration:Iteration=84, var_wn=0.0732091 +fixed_point_iteration:Iteration=85, var_wn=0.0731219 +fixed_point_iteration:Iteration=86, var_wn=0.0730379 +fixed_point_iteration:Iteration=87, var_wn=0.0729569 +fixed_point_iteration:Iteration=88, var_wn=0.072879 +fixed_point_iteration:Iteration=89, var_wn=0.0728038 +fixed_point_iteration:Iteration=90, var_wn=0.0727315 +fixed_point_iteration:Iteration=91, var_wn=0.0726617 +fixed_point_iteration:Iteration=92, var_wn=0.0725945 +fixed_point_iteration:Iteration=93, var_wn=0.0725298 +fixed_point_iteration:Iteration=94, var_wn=0.0724673 +fixed_point_iteration:Iteration=95, var_wn=0.0724072 +fixed_point_iteration:Iteration=96, var_wn=0.0723491 +fixed_point_iteration:Iteration=97, var_wn=0.0722932 +fixed_point_iteration:Iteration=98, var_wn=0.0722393 +fixed_point_iteration:Iteration=99, var_wn=0.0721873 +fixed_point_iteration:Iteration=100, var_wn=0.0721372 +fixed_point_iteration:Iteration=101, var_wn=0.0720888 +fixed_point_iteration:Iteration=102, var_wn=0.0720422 +fixed_point_iteration:Iteration=103, var_wn=0.0719972 +fixed_point_iteration:Iteration=104, var_wn=0.0719538 +fixed_point_iteration:Iteration=105, var_wn=0.0719119 +fixed_point_iteration:Iteration=106, var_wn=0.0718716 +fixed_point_iteration:Iteration=107, var_wn=0.0718326 +fixed_point_iteration:Iteration=108, var_wn=0.0717951 +fixed_point_iteration:Iteration=109, var_wn=0.0717588 +fixed_point_iteration:Iteration=110, var_wn=0.0717238 +fixed_point_iteration:Iteration=111, var_wn=0.0716901 +fixed_point_iteration:Iteration=112, var_wn=0.0716575 +fixed_point_iteration:Iteration=113, var_wn=0.0716261 +fixed_point_iteration:Iteration=114, var_wn=0.0715957 +fixed_point_iteration:Iteration=115, var_wn=0.0715664 +fixed_point_iteration:Iteration=116, var_wn=0.0715382 +fixed_point_iteration:Iteration=117, var_wn=0.0715109 +fixed_point_iteration:Iteration=118, var_wn=0.0714846 +fixed_point_iteration:Iteration=119, var_wn=0.0714592 +fixed_point_iteration:Iteration=120, var_wn=0.0714347 +fixed_point_iteration:Iteration=121, var_wn=0.071411 +fixed_point_iteration:Iteration=122, var_wn=0.0713881 +fixed_point_iteration:Iteration=123, var_wn=0.0713661 +fixed_point_iteration:Iteration=124, var_wn=0.0713448 +fixed_point_iteration:Iteration=125, var_wn=0.0713242 +fixed_point_iteration:Iteration=126, var_wn=0.0713044 +fixed_point_iteration:Iteration=127, var_wn=0.0712852 +fixed_point_iteration:Iteration=128, var_wn=0.0712667 +fixed_point_iteration:Iteration=129, var_wn=0.0712488 +fixed_point_iteration:Iteration=130, var_wn=0.0712316 +fixed_point_iteration:Iteration=131, var_wn=0.0712149 +fixed_point_iteration:Iteration=132, var_wn=0.0711988 +fixed_point_iteration:Iteration=133, var_wn=0.0711833 +fixed_point_iteration:Iteration=134, var_wn=0.0711683 +fixed_point_iteration:Iteration=135, var_wn=0.0711538 +fixed_point_iteration:Iteration=136, var_wn=0.0711398 +fixed_point_iteration:Iteration=137, var_wn=0.0711263 +fixed_point_iteration:Iteration=138, var_wn=0.0711133 +fixed_point_iteration:Iteration=139, var_wn=0.0711007 +fixed_point_iteration:Iteration=140, var_wn=0.0710885 +fixed_point_iteration:Iteration=141, var_wn=0.0710768 +fixed_point_iteration:Iteration=142, var_wn=0.0710654 +fixed_point_iteration:Iteration=143, var_wn=0.0710545 +fixed_point_iteration:Iteration=144, var_wn=0.0710439 +fixed_point_iteration:Iteration=145, var_wn=0.0710337 +fixed_point_iteration:Iteration=146, var_wn=0.0710238 +WN variance = 0.0710238 Partition size = (34,13,13) Finished part [1/96] Finished part [2/96] Finished part [3/96] Finished part [4/96] Finished part [5/96] Finished part [6/96] Finished part [7/96] Finished part [8/96] Finished part [9/96] Finished part [10/96] Finished part [11/96] Finished part [12/96] Finished part [13/96] Finished part [14/96] Finished part [15/96] Finished part [16/96] Finished part [17/96] Finished part [18/96] Finished part [19/96] Finished part [20/96] Finished part [21/96] Finished part [22/96] Finished part [23/96] Finished part [24/96] Finished part [25/96] Finished part [26/96] Finished part [27/96] Finished part [28/96] Finished part [29/96] Finished part [30/96] Finished part [31/96] Finished part [32/96] Finished part [33/96] Finished part [34/96] Finished part [35/96] Finished part [36/96] Finished part [37/96] Finished part [38/96] Finished part [39/96] Finished part [40/96] Finished part [41/96] Finished part [42/96] Finished part [43/96] Finished part [44/96] Finished part [45/96] Finished part [46/96] Finished part [47/96] Finished part [48/96] Finished part [49/96] Finished part [50/96] Finished part [51/96] Finished part [52/96] Finished part [53/96] Finished part [54/96] Finished part [55/96] Finished part [56/96] Finished part [57/96] Finished part [58/96] Finished part [59/96] Finished part [60/96] Finished part [61/96] Finished part [62/96] Finished part [63/96] Finished part [64/96] Finished part [65/96] Finished part [66/96] Finished part [67/96] Finished part [68/96] Finished part [69/96] Finished part [70/96] Finished part [71/96] Finished part [72/96] Finished part [73/96] Finished part [74/96] Finished part [75/96] Finished part [76/96] Finished part [77/96] Finished part [78/96] Finished part [79/96] Finished part [80/96] Finished part [81/96] Finished part [82/96] Finished part [83/96] Finished part [84/96] Finished part [85/96] Finished part [86/96] Finished part [87/96] Finished part [88/96] Finished part [89/96] Finished part [90/96] Finished part [91/96] Finished part [92/96] Finished part [93/96] Finished part [94/96] Finished part [95/96] Finished part [96/96] prfl dev_to_host_copy = 0us -prfl fft = 69013us -prfl second_function = 1773us -prfl window_function = 680350us -'zeta.csv' -> 'zeta-gramcharlier.csv' -Input file = /home/igankevich/workspace/arma-thesis/config/nit-propagating-skewnormal +prfl fft = 67598us +prfl second_function = 1780us +prfl window_function = 673751us +'zeta.csv' -> 'zeta-none.csv' +Input file = /home/igankevich/workspace/arma-thesis/config/nit-propagating-gramcharlier Output grid size = (200,40,40) Output grid patch size = (1,1,1) Model = MA @@ -1033,230 +753,369 @@ Verification scheme = manual MA model = order=(20,10,10),acf.shape=(20,10,10),algorithm=fixed_point_iteration Velocity potential solver name = N4arma8velocity21High_amplitude_solverIdEE Velocity potential solver = wnmax=from (0,0) to (0,0.25) npoints (2,2),depth=12,domain=from (10,-12) to (10,3) npoints (1,128) -NIT transform = dist=skew_normal,mean=0,stdev=1,alpha=1,interpolation_nodes=100,interpolation_order=12,gram_charlier_order=20 -err = 0.998755 -err = 0.983748 -err = 0.977411 -err = 1.59755 -err = 2.27643 -err = 39.8798 -err = 46.1337 -err = 364.604 -err = 404.416 -err = 2334.27 -err = 2527.26 -err = 11726.6 -err = 12493.2 -err = 49079.7 -err = 51693 +NIT transform = dist=gram_charlier,skewness=2.25,kurtosis=0.4,interpolation_nodes=100,interpolation_order=12,gram_charlier_order=20 +err = 0.997239 +err = 0.195639 +err = 0.204665 +err = 3.3227 +err = 4.20064 +err = 41.2299 +err = 47.0536 +err = 366.08 +err = 406.6 +err = 2335.93 +err = 2527.49 +err = 11726.2 +err = 12492.8 +err = 49079.2 +err = 51692.6 err = 177911 err = 185800 err = 573975 err = 595540 err = 1.68124e+06 +trim = 2 +ACF variance = 1 +fixed_point_iteration:Iteration=0, var_wn=0.541662 +fixed_point_iteration:Iteration=1, var_wn=0.387581 +fixed_point_iteration:Iteration=2, var_wn=0.309602 +fixed_point_iteration:Iteration=3, var_wn=0.262404 +fixed_point_iteration:Iteration=4, var_wn=0.230656 +fixed_point_iteration:Iteration=5, var_wn=0.207721 +fixed_point_iteration:Iteration=6, var_wn=0.190288 +fixed_point_iteration:Iteration=7, var_wn=0.176535 +fixed_point_iteration:Iteration=8, var_wn=0.165376 +fixed_point_iteration:Iteration=9, var_wn=0.156125 +fixed_point_iteration:Iteration=10, var_wn=0.148322 +fixed_point_iteration:Iteration=11, var_wn=0.141649 +fixed_point_iteration:Iteration=12, var_wn=0.135875 +fixed_point_iteration:Iteration=13, var_wn=0.130829 +fixed_point_iteration:Iteration=14, var_wn=0.126382 +fixed_point_iteration:Iteration=15, var_wn=0.122434 +fixed_point_iteration:Iteration=16, var_wn=0.118905 +fixed_point_iteration:Iteration=17, var_wn=0.115733 +fixed_point_iteration:Iteration=18, var_wn=0.112867 +fixed_point_iteration:Iteration=19, var_wn=0.110265 +fixed_point_iteration:Iteration=20, var_wn=0.107894 +fixed_point_iteration:Iteration=21, var_wn=0.105725 +fixed_point_iteration:Iteration=22, var_wn=0.103733 +fixed_point_iteration:Iteration=23, var_wn=0.101899 +fixed_point_iteration:Iteration=24, var_wn=0.100206 +fixed_point_iteration:Iteration=25, var_wn=0.0986382 +fixed_point_iteration:Iteration=26, var_wn=0.0971831 +fixed_point_iteration:Iteration=27, var_wn=0.0958297 +fixed_point_iteration:Iteration=28, var_wn=0.0945682 +fixed_point_iteration:Iteration=29, var_wn=0.0933903 +fixed_point_iteration:Iteration=30, var_wn=0.0922883 +fixed_point_iteration:Iteration=31, var_wn=0.0912558 +fixed_point_iteration:Iteration=32, var_wn=0.0902869 +fixed_point_iteration:Iteration=33, var_wn=0.0893763 +fixed_point_iteration:Iteration=34, var_wn=0.0885194 +fixed_point_iteration:Iteration=35, var_wn=0.087712 +fixed_point_iteration:Iteration=36, var_wn=0.0869503 +fixed_point_iteration:Iteration=37, var_wn=0.086231 +fixed_point_iteration:Iteration=38, var_wn=0.085551 +fixed_point_iteration:Iteration=39, var_wn=0.0849075 +fixed_point_iteration:Iteration=40, var_wn=0.0842979 +fixed_point_iteration:Iteration=41, var_wn=0.0837201 +fixed_point_iteration:Iteration=42, var_wn=0.0831718 +fixed_point_iteration:Iteration=43, var_wn=0.0826511 +fixed_point_iteration:Iteration=44, var_wn=0.0821564 +fixed_point_iteration:Iteration=45, var_wn=0.0816859 +fixed_point_iteration:Iteration=46, var_wn=0.0812382 +fixed_point_iteration:Iteration=47, var_wn=0.0808119 +fixed_point_iteration:Iteration=48, var_wn=0.0804057 +fixed_point_iteration:Iteration=49, var_wn=0.0800185 +fixed_point_iteration:Iteration=50, var_wn=0.0796491 +fixed_point_iteration:Iteration=51, var_wn=0.0792966 +fixed_point_iteration:Iteration=52, var_wn=0.07896 +fixed_point_iteration:Iteration=53, var_wn=0.0786385 +fixed_point_iteration:Iteration=54, var_wn=0.0783313 +fixed_point_iteration:Iteration=55, var_wn=0.0780375 +fixed_point_iteration:Iteration=56, var_wn=0.0777565 +fixed_point_iteration:Iteration=57, var_wn=0.0774875 +fixed_point_iteration:Iteration=58, var_wn=0.0772301 +fixed_point_iteration:Iteration=59, var_wn=0.0769836 +fixed_point_iteration:Iteration=60, var_wn=0.0767475 +fixed_point_iteration:Iteration=61, var_wn=0.0765213 +fixed_point_iteration:Iteration=62, var_wn=0.0763044 +fixed_point_iteration:Iteration=63, var_wn=0.0760964 +fixed_point_iteration:Iteration=64, var_wn=0.0758969 +fixed_point_iteration:Iteration=65, var_wn=0.0757056 +fixed_point_iteration:Iteration=66, var_wn=0.075522 +fixed_point_iteration:Iteration=67, var_wn=0.0753457 +fixed_point_iteration:Iteration=68, var_wn=0.0751764 +fixed_point_iteration:Iteration=69, var_wn=0.0750139 +fixed_point_iteration:Iteration=70, var_wn=0.0748578 +fixed_point_iteration:Iteration=71, var_wn=0.0747078 +fixed_point_iteration:Iteration=72, var_wn=0.0745637 +fixed_point_iteration:Iteration=73, var_wn=0.0744251 +fixed_point_iteration:Iteration=74, var_wn=0.0742919 +fixed_point_iteration:Iteration=75, var_wn=0.0741639 +fixed_point_iteration:Iteration=76, var_wn=0.0740407 +fixed_point_iteration:Iteration=77, var_wn=0.0739223 +fixed_point_iteration:Iteration=78, var_wn=0.0738083 +fixed_point_iteration:Iteration=79, var_wn=0.0736987 +fixed_point_iteration:Iteration=80, var_wn=0.0735932 +fixed_point_iteration:Iteration=81, var_wn=0.0734916 +fixed_point_iteration:Iteration=82, var_wn=0.0733939 +fixed_point_iteration:Iteration=83, var_wn=0.0732998 +fixed_point_iteration:Iteration=84, var_wn=0.0732091 +fixed_point_iteration:Iteration=85, var_wn=0.0731219 +fixed_point_iteration:Iteration=86, var_wn=0.0730379 +fixed_point_iteration:Iteration=87, var_wn=0.0729569 +fixed_point_iteration:Iteration=88, var_wn=0.072879 +fixed_point_iteration:Iteration=89, var_wn=0.0728038 +fixed_point_iteration:Iteration=90, var_wn=0.0727315 +fixed_point_iteration:Iteration=91, var_wn=0.0726617 +fixed_point_iteration:Iteration=92, var_wn=0.0725945 +fixed_point_iteration:Iteration=93, var_wn=0.0725298 +fixed_point_iteration:Iteration=94, var_wn=0.0724673 +fixed_point_iteration:Iteration=95, var_wn=0.0724072 +fixed_point_iteration:Iteration=96, var_wn=0.0723491 +fixed_point_iteration:Iteration=97, var_wn=0.0722932 +fixed_point_iteration:Iteration=98, var_wn=0.0722393 +fixed_point_iteration:Iteration=99, var_wn=0.0721873 +fixed_point_iteration:Iteration=100, var_wn=0.0721372 +fixed_point_iteration:Iteration=101, var_wn=0.0720888 +fixed_point_iteration:Iteration=102, var_wn=0.0720422 +fixed_point_iteration:Iteration=103, var_wn=0.0719972 +fixed_point_iteration:Iteration=104, var_wn=0.0719538 +fixed_point_iteration:Iteration=105, var_wn=0.0719119 +fixed_point_iteration:Iteration=106, var_wn=0.0718716 +fixed_point_iteration:Iteration=107, var_wn=0.0718326 +fixed_point_iteration:Iteration=108, var_wn=0.0717951 +fixed_point_iteration:Iteration=109, var_wn=0.0717588 +fixed_point_iteration:Iteration=110, var_wn=0.0717238 +fixed_point_iteration:Iteration=111, var_wn=0.0716901 +fixed_point_iteration:Iteration=112, var_wn=0.0716575 +fixed_point_iteration:Iteration=113, var_wn=0.0716261 +fixed_point_iteration:Iteration=114, var_wn=0.0715957 +fixed_point_iteration:Iteration=115, var_wn=0.0715664 +fixed_point_iteration:Iteration=116, var_wn=0.0715382 +fixed_point_iteration:Iteration=117, var_wn=0.0715109 +fixed_point_iteration:Iteration=118, var_wn=0.0714846 +fixed_point_iteration:Iteration=119, var_wn=0.0714592 +fixed_point_iteration:Iteration=120, var_wn=0.0714347 +fixed_point_iteration:Iteration=121, var_wn=0.071411 +fixed_point_iteration:Iteration=122, var_wn=0.0713881 +fixed_point_iteration:Iteration=123, var_wn=0.0713661 +fixed_point_iteration:Iteration=124, var_wn=0.0713448 +fixed_point_iteration:Iteration=125, var_wn=0.0713242 +fixed_point_iteration:Iteration=126, var_wn=0.0713044 +fixed_point_iteration:Iteration=127, var_wn=0.0712852 +fixed_point_iteration:Iteration=128, var_wn=0.0712667 +fixed_point_iteration:Iteration=129, var_wn=0.0712488 +fixed_point_iteration:Iteration=130, var_wn=0.0712316 +fixed_point_iteration:Iteration=131, var_wn=0.0712149 +fixed_point_iteration:Iteration=132, var_wn=0.0711988 +fixed_point_iteration:Iteration=133, var_wn=0.0711833 +fixed_point_iteration:Iteration=134, var_wn=0.0711683 +fixed_point_iteration:Iteration=135, var_wn=0.0711538 +fixed_point_iteration:Iteration=136, var_wn=0.0711398 +fixed_point_iteration:Iteration=137, var_wn=0.0711263 +fixed_point_iteration:Iteration=138, var_wn=0.0711133 +fixed_point_iteration:Iteration=139, var_wn=0.0711007 +fixed_point_iteration:Iteration=140, var_wn=0.0710885 +fixed_point_iteration:Iteration=141, var_wn=0.0710768 +fixed_point_iteration:Iteration=142, var_wn=0.0710654 +fixed_point_iteration:Iteration=143, var_wn=0.0710545 +fixed_point_iteration:Iteration=144, var_wn=0.0710439 +fixed_point_iteration:Iteration=145, var_wn=0.0710337 +fixed_point_iteration:Iteration=146, var_wn=0.0710238 +WN variance = 0.0710238 +Partition size = (34,13,13) + Finished part [1/96] Finished part [2/96] Finished part [3/96] Finished part [4/96] Finished part [5/96] Finished part [6/96] Finished part [7/96] Finished part [8/96] Finished part [9/96] Finished part [10/96] Finished part [11/96] Finished part [12/96] Finished part [13/96] Finished part [14/96] Finished part [15/96] Finished part [16/96] Finished part [17/96] Finished part [18/96] Finished part [19/96] Finished part [20/96] Finished part [21/96] Finished part [22/96] Finished part [23/96] Finished part [24/96] Finished part [25/96] Finished part [26/96] Finished part [27/96] Finished part [28/96] Finished part [29/96] Finished part [30/96] Finished part [31/96] Finished part [32/96] Finished part [33/96] Finished part [34/96] Finished part [35/96] Finished part [36/96] Finished part [37/96] Finished part [38/96] Finished part [39/96] Finished part [40/96] Finished part [41/96] Finished part [42/96] Finished part [43/96] Finished part [44/96] Finished part [45/96] Finished part [46/96] Finished part [47/96] Finished part [48/96] Finished part [49/96] Finished part [50/96] Finished part [51/96] Finished part [52/96] Finished part [53/96] Finished part [54/96] Finished part [55/96] Finished part [56/96] Finished part [57/96] Finished part [58/96] Finished part [59/96] Finished part [60/96] Finished part [61/96] Finished part [62/96] Finished part [63/96] Finished part [64/96] Finished part [65/96] Finished part [66/96] Finished part [67/96] Finished part [68/96] Finished part [69/96] Finished part [70/96] Finished part [71/96] Finished part [72/96] Finished part [73/96] Finished part [74/96] Finished part [75/96] Finished part [76/96] Finished part [77/96] Finished part [78/96] Finished part [79/96] Finished part [80/96] Finished part [81/96] Finished part [82/96] Finished part [83/96] Finished part [84/96] Finished part [85/96] Finished part [86/96] Finished part [87/96] Finished part [88/96] Finished part [89/96] Finished part [90/96] Finished part [91/96] Finished part [92/96] Finished part [93/96] Finished part [94/96] Finished part [95/96] Finished part [96/96] +prfl dev_to_host_copy = 0us +prfl fft = 80945us +prfl second_function = 1810us +prfl window_function = 674201us +'zeta.csv' -> 'zeta-gramcharlier.csv' +Input file = /home/igankevich/workspace/arma-thesis/config/nit-propagating-skewnormal +Output grid size = (200,40,40) +Output grid patch size = (1,1,1) +Model = MA +Verification scheme = manual +MA model = order=(20,10,10),acf.shape=(20,10,10),algorithm=fixed_point_iteration +Velocity potential solver name = N4arma8velocity21High_amplitude_solverIdEE +Velocity potential solver = wnmax=from (0,0) to (0,0.25) npoints (2,2),depth=12,domain=from (10,-12) to (10,3) npoints (1,128) +NIT transform = dist=skew_normal,mean=0,stdev=1,alpha=1,interpolation_nodes=100,interpolation_order=12,gram_charlier_order=20 +err = 0.906446 +err = 0.711503 +err = 0.697377 +err = 1.8528 +err = 2.67306 +err = 40.4663 +err = 46.4794 +err = 364.63 +err = 404.774 +err = 2335.07 +err = 2527.48 +err = 11727.3 +err = 12493.9 +err = 49080.4 +err = 51693.7 +err = 177912 +err = 185801 +err = 573976 +err = 595541 +err = 1.68124e+06 trim = 3 -ACF variance = 5 -fixed_point_iteration:Iteration=0, var_wn=2.70831 -fixed_point_iteration:Iteration=1, var_wn=1.93791 -fixed_point_iteration:Iteration=2, var_wn=1.54801 -fixed_point_iteration:Iteration=3, var_wn=1.31202 -fixed_point_iteration:Iteration=4, var_wn=1.15328 -fixed_point_iteration:Iteration=5, var_wn=1.0386 -fixed_point_iteration:Iteration=6, var_wn=0.951442 -fixed_point_iteration:Iteration=7, var_wn=0.882674 -fixed_point_iteration:Iteration=8, var_wn=0.82688 -fixed_point_iteration:Iteration=9, var_wn=0.780623 -fixed_point_iteration:Iteration=10, var_wn=0.74161 -fixed_point_iteration:Iteration=11, var_wn=0.708244 -fixed_point_iteration:Iteration=12, var_wn=0.679374 -fixed_point_iteration:Iteration=13, var_wn=0.654145 -fixed_point_iteration:Iteration=14, var_wn=0.63191 -fixed_point_iteration:Iteration=15, var_wn=0.612168 -fixed_point_iteration:Iteration=16, var_wn=0.594523 -fixed_point_iteration:Iteration=17, var_wn=0.578663 -fixed_point_iteration:Iteration=18, var_wn=0.564333 -fixed_point_iteration:Iteration=19, var_wn=0.551325 -fixed_point_iteration:Iteration=20, var_wn=0.539469 -fixed_point_iteration:Iteration=21, var_wn=0.528623 -fixed_point_iteration:Iteration=22, var_wn=0.518666 -fixed_point_iteration:Iteration=23, var_wn=0.509497 -fixed_point_iteration:Iteration=24, var_wn=0.50103 -fixed_point_iteration:Iteration=25, var_wn=0.493191 -fixed_point_iteration:Iteration=26, var_wn=0.485915 -fixed_point_iteration:Iteration=27, var_wn=0.479148 -fixed_point_iteration:Iteration=28, var_wn=0.472841 -fixed_point_iteration:Iteration=29, var_wn=0.466951 -fixed_point_iteration:Iteration=30, var_wn=0.461442 -fixed_point_iteration:Iteration=31, var_wn=0.456279 -fixed_point_iteration:Iteration=32, var_wn=0.451435 -fixed_point_iteration:Iteration=33, var_wn=0.446882 -fixed_point_iteration:Iteration=34, var_wn=0.442597 -fixed_point_iteration:Iteration=35, var_wn=0.43856 -fixed_point_iteration:Iteration=36, var_wn=0.434752 -fixed_point_iteration:Iteration=37, var_wn=0.431155 -fixed_point_iteration:Iteration=38, var_wn=0.427755 -fixed_point_iteration:Iteration=39, var_wn=0.424537 -fixed_point_iteration:Iteration=40, var_wn=0.42149 -fixed_point_iteration:Iteration=41, var_wn=0.4186 -fixed_point_iteration:Iteration=42, var_wn=0.415859 -fixed_point_iteration:Iteration=43, var_wn=0.413256 -fixed_point_iteration:Iteration=44, var_wn=0.410782 -fixed_point_iteration:Iteration=45, var_wn=0.408429 -fixed_point_iteration:Iteration=46, var_wn=0.406191 -fixed_point_iteration:Iteration=47, var_wn=0.404059 -fixed_point_iteration:Iteration=48, var_wn=0.402028 -fixed_point_iteration:Iteration=49, var_wn=0.400092 -fixed_point_iteration:Iteration=50, var_wn=0.398246 -fixed_point_iteration:Iteration=51, var_wn=0.396483 -fixed_point_iteration:Iteration=52, var_wn=0.3948 -fixed_point_iteration:Iteration=53, var_wn=0.393193 -fixed_point_iteration:Iteration=54, var_wn=0.391656 -fixed_point_iteration:Iteration=55, var_wn=0.390187 -fixed_point_iteration:Iteration=56, var_wn=0.388782 -fixed_point_iteration:Iteration=57, var_wn=0.387438 -fixed_point_iteration:Iteration=58, var_wn=0.386151 -fixed_point_iteration:Iteration=59, var_wn=0.384918 -fixed_point_iteration:Iteration=60, var_wn=0.383738 -fixed_point_iteration:Iteration=61, var_wn=0.382606 -fixed_point_iteration:Iteration=62, var_wn=0.381522 -fixed_point_iteration:Iteration=63, var_wn=0.380482 -fixed_point_iteration:Iteration=64, var_wn=0.379485 -fixed_point_iteration:Iteration=65, var_wn=0.378528 -fixed_point_iteration:Iteration=66, var_wn=0.37761 -fixed_point_iteration:Iteration=67, var_wn=0.376728 -fixed_point_iteration:Iteration=68, var_wn=0.375882 -fixed_point_iteration:Iteration=69, var_wn=0.37507 -fixed_point_iteration:Iteration=70, var_wn=0.374289 -fixed_point_iteration:Iteration=71, var_wn=0.373539 -fixed_point_iteration:Iteration=72, var_wn=0.372818 -fixed_point_iteration:Iteration=73, var_wn=0.372126 -fixed_point_iteration:Iteration=74, var_wn=0.37146 -fixed_point_iteration:Iteration=75, var_wn=0.370819 -fixed_point_iteration:Iteration=76, var_wn=0.370204 -fixed_point_iteration:Iteration=77, var_wn=0.369611 -fixed_point_iteration:Iteration=78, var_wn=0.369042 -fixed_point_iteration:Iteration=79, var_wn=0.368493 -fixed_point_iteration:Iteration=80, var_wn=0.367966 -fixed_point_iteration:Iteration=81, var_wn=0.367458 -fixed_point_iteration:Iteration=82, var_wn=0.366969 -fixed_point_iteration:Iteration=83, var_wn=0.366499 -fixed_point_iteration:Iteration=84, var_wn=0.366046 -fixed_point_iteration:Iteration=85, var_wn=0.365609 -fixed_point_iteration:Iteration=86, var_wn=0.365189 -fixed_point_iteration:Iteration=87, var_wn=0.364785 -fixed_point_iteration:Iteration=88, var_wn=0.364395 -fixed_point_iteration:Iteration=89, var_wn=0.364019 -fixed_point_iteration:Iteration=90, var_wn=0.363657 -fixed_point_iteration:Iteration=91, var_wn=0.363309 -fixed_point_iteration:Iteration=92, var_wn=0.362973 -fixed_point_iteration:Iteration=93, var_wn=0.362649 -fixed_point_iteration:Iteration=94, var_wn=0.362337 -fixed_point_iteration:Iteration=95, var_wn=0.362036 -fixed_point_iteration:Iteration=96, var_wn=0.361746 -fixed_point_iteration:Iteration=97, var_wn=0.361466 -fixed_point_iteration:Iteration=98, var_wn=0.361196 -fixed_point_iteration:Iteration=99, var_wn=0.360936 -fixed_point_iteration:Iteration=100, var_wn=0.360686 -fixed_point_iteration:Iteration=101, var_wn=0.360444 -fixed_point_iteration:Iteration=102, var_wn=0.360211 -fixed_point_iteration:Iteration=103, var_wn=0.359986 -fixed_point_iteration:Iteration=104, var_wn=0.359769 -fixed_point_iteration:Iteration=105, var_wn=0.35956 -fixed_point_iteration:Iteration=106, var_wn=0.359358 -fixed_point_iteration:Iteration=107, var_wn=0.359163 -fixed_point_iteration:Iteration=108, var_wn=0.358975 -fixed_point_iteration:Iteration=109, var_wn=0.358794 -fixed_point_iteration:Iteration=110, var_wn=0.358619 -fixed_point_iteration:Iteration=111, var_wn=0.35845 -fixed_point_iteration:Iteration=112, var_wn=0.358287 -fixed_point_iteration:Iteration=113, var_wn=0.35813 -fixed_point_iteration:Iteration=114, var_wn=0.357979 -fixed_point_iteration:Iteration=115, var_wn=0.357832 -fixed_point_iteration:Iteration=116, var_wn=0.357691 -fixed_point_iteration:Iteration=117, var_wn=0.357555 -fixed_point_iteration:Iteration=118, var_wn=0.357423 -fixed_point_iteration:Iteration=119, var_wn=0.357296 -fixed_point_iteration:Iteration=120, var_wn=0.357173 -fixed_point_iteration:Iteration=121, var_wn=0.357055 -fixed_point_iteration:Iteration=122, var_wn=0.356941 -fixed_point_iteration:Iteration=123, var_wn=0.35683 -fixed_point_iteration:Iteration=124, var_wn=0.356724 -fixed_point_iteration:Iteration=125, var_wn=0.356621 -fixed_point_iteration:Iteration=126, var_wn=0.356522 -fixed_point_iteration:Iteration=127, var_wn=0.356426 -fixed_point_iteration:Iteration=128, var_wn=0.356334 -fixed_point_iteration:Iteration=129, var_wn=0.356244 -fixed_point_iteration:Iteration=130, var_wn=0.356158 -fixed_point_iteration:Iteration=131, var_wn=0.356075 -fixed_point_iteration:Iteration=132, var_wn=0.355994 -fixed_point_iteration:Iteration=133, var_wn=0.355917 -fixed_point_iteration:Iteration=134, var_wn=0.355842 -fixed_point_iteration:Iteration=135, var_wn=0.355769 -fixed_point_iteration:Iteration=136, var_wn=0.355699 -fixed_point_iteration:Iteration=137, var_wn=0.355632 -fixed_point_iteration:Iteration=138, var_wn=0.355566 -fixed_point_iteration:Iteration=139, var_wn=0.355504 -fixed_point_iteration:Iteration=140, var_wn=0.355443 -fixed_point_iteration:Iteration=141, var_wn=0.355384 -fixed_point_iteration:Iteration=142, var_wn=0.355327 -fixed_point_iteration:Iteration=143, var_wn=0.355272 -fixed_point_iteration:Iteration=144, var_wn=0.35522 -fixed_point_iteration:Iteration=145, var_wn=0.355168 -fixed_point_iteration:Iteration=146, var_wn=0.355119 -fixed_point_iteration:Iteration=147, var_wn=0.355071 -fixed_point_iteration:Iteration=148, var_wn=0.355025 -fixed_point_iteration:Iteration=149, var_wn=0.354981 -fixed_point_iteration:Iteration=150, var_wn=0.354938 -fixed_point_iteration:Iteration=151, var_wn=0.354896 -fixed_point_iteration:Iteration=152, var_wn=0.354856 -fixed_point_iteration:Iteration=153, var_wn=0.354818 -fixed_point_iteration:Iteration=154, var_wn=0.35478 -fixed_point_iteration:Iteration=155, var_wn=0.354744 -fixed_point_iteration:Iteration=156, var_wn=0.354709 -fixed_point_iteration:Iteration=157, var_wn=0.354676 -fixed_point_iteration:Iteration=158, var_wn=0.354643 -fixed_point_iteration:Iteration=159, var_wn=0.354612 -fixed_point_iteration:Iteration=160, var_wn=0.354581 -fixed_point_iteration:Iteration=161, var_wn=0.354552 -fixed_point_iteration:Iteration=162, var_wn=0.354523 -fixed_point_iteration:Iteration=163, var_wn=0.354496 -fixed_point_iteration:Iteration=164, var_wn=0.35447 -fixed_point_iteration:Iteration=165, var_wn=0.354444 -fixed_point_iteration:Iteration=166, var_wn=0.354419 -fixed_point_iteration:Iteration=167, var_wn=0.354396 -fixed_point_iteration:Iteration=168, var_wn=0.354373 -fixed_point_iteration:Iteration=169, var_wn=0.35435 -fixed_point_iteration:Iteration=170, var_wn=0.354329 -fixed_point_iteration:Iteration=171, var_wn=0.354308 -fixed_point_iteration:Iteration=172, var_wn=0.354288 -fixed_point_iteration:Iteration=173, var_wn=0.354269 -fixed_point_iteration:Iteration=174, var_wn=0.35425 -fixed_point_iteration:Iteration=175, var_wn=0.354232 -fixed_point_iteration:Iteration=176, var_wn=0.354214 -fixed_point_iteration:Iteration=177, var_wn=0.354197 -fixed_point_iteration:Iteration=178, var_wn=0.354181 -fixed_point_iteration:Iteration=179, var_wn=0.354165 -fixed_point_iteration:Iteration=180, var_wn=0.35415 -fixed_point_iteration:Iteration=181, var_wn=0.354135 -fixed_point_iteration:Iteration=182, var_wn=0.354121 -fixed_point_iteration:Iteration=183, var_wn=0.354107 -fixed_point_iteration:Iteration=184, var_wn=0.354094 -fixed_point_iteration:Iteration=185, var_wn=0.354081 -fixed_point_iteration:Iteration=186, var_wn=0.354069 -fixed_point_iteration:Iteration=187, var_wn=0.354057 -fixed_point_iteration:Iteration=188, var_wn=0.354046 -fixed_point_iteration:Iteration=189, var_wn=0.354034 -fixed_point_iteration:Iteration=190, var_wn=0.354024 -fixed_point_iteration:Iteration=191, var_wn=0.354013 -fixed_point_iteration:Iteration=192, var_wn=0.354003 -fixed_point_iteration:Iteration=193, var_wn=0.353993 -WN variance = 0.353993 +ACF variance = 1 +fixed_point_iteration:Iteration=0, var_wn=0.541662 +fixed_point_iteration:Iteration=1, var_wn=0.387581 +fixed_point_iteration:Iteration=2, var_wn=0.309602 +fixed_point_iteration:Iteration=3, var_wn=0.262404 +fixed_point_iteration:Iteration=4, var_wn=0.230656 +fixed_point_iteration:Iteration=5, var_wn=0.207721 +fixed_point_iteration:Iteration=6, var_wn=0.190288 +fixed_point_iteration:Iteration=7, var_wn=0.176535 +fixed_point_iteration:Iteration=8, var_wn=0.165376 +fixed_point_iteration:Iteration=9, var_wn=0.156125 +fixed_point_iteration:Iteration=10, var_wn=0.148322 +fixed_point_iteration:Iteration=11, var_wn=0.141649 +fixed_point_iteration:Iteration=12, var_wn=0.135875 +fixed_point_iteration:Iteration=13, var_wn=0.130829 +fixed_point_iteration:Iteration=14, var_wn=0.126382 +fixed_point_iteration:Iteration=15, var_wn=0.122434 +fixed_point_iteration:Iteration=16, var_wn=0.118905 +fixed_point_iteration:Iteration=17, var_wn=0.115733 +fixed_point_iteration:Iteration=18, var_wn=0.112867 +fixed_point_iteration:Iteration=19, var_wn=0.110265 +fixed_point_iteration:Iteration=20, var_wn=0.107894 +fixed_point_iteration:Iteration=21, var_wn=0.105725 +fixed_point_iteration:Iteration=22, var_wn=0.103733 +fixed_point_iteration:Iteration=23, var_wn=0.101899 +fixed_point_iteration:Iteration=24, var_wn=0.100206 +fixed_point_iteration:Iteration=25, var_wn=0.0986382 +fixed_point_iteration:Iteration=26, var_wn=0.0971831 +fixed_point_iteration:Iteration=27, var_wn=0.0958297 +fixed_point_iteration:Iteration=28, var_wn=0.0945682 +fixed_point_iteration:Iteration=29, var_wn=0.0933903 +fixed_point_iteration:Iteration=30, var_wn=0.0922883 +fixed_point_iteration:Iteration=31, var_wn=0.0912558 +fixed_point_iteration:Iteration=32, var_wn=0.0902869 +fixed_point_iteration:Iteration=33, var_wn=0.0893763 +fixed_point_iteration:Iteration=34, var_wn=0.0885194 +fixed_point_iteration:Iteration=35, var_wn=0.087712 +fixed_point_iteration:Iteration=36, var_wn=0.0869503 +fixed_point_iteration:Iteration=37, var_wn=0.086231 +fixed_point_iteration:Iteration=38, var_wn=0.085551 +fixed_point_iteration:Iteration=39, var_wn=0.0849075 +fixed_point_iteration:Iteration=40, var_wn=0.0842979 +fixed_point_iteration:Iteration=41, var_wn=0.0837201 +fixed_point_iteration:Iteration=42, var_wn=0.0831718 +fixed_point_iteration:Iteration=43, var_wn=0.0826511 +fixed_point_iteration:Iteration=44, var_wn=0.0821564 +fixed_point_iteration:Iteration=45, var_wn=0.0816859 +fixed_point_iteration:Iteration=46, var_wn=0.0812382 +fixed_point_iteration:Iteration=47, var_wn=0.0808119 +fixed_point_iteration:Iteration=48, var_wn=0.0804057 +fixed_point_iteration:Iteration=49, var_wn=0.0800185 +fixed_point_iteration:Iteration=50, var_wn=0.0796491 +fixed_point_iteration:Iteration=51, var_wn=0.0792966 +fixed_point_iteration:Iteration=52, var_wn=0.07896 +fixed_point_iteration:Iteration=53, var_wn=0.0786385 +fixed_point_iteration:Iteration=54, var_wn=0.0783313 +fixed_point_iteration:Iteration=55, var_wn=0.0780375 +fixed_point_iteration:Iteration=56, var_wn=0.0777565 +fixed_point_iteration:Iteration=57, var_wn=0.0774875 +fixed_point_iteration:Iteration=58, var_wn=0.0772301 +fixed_point_iteration:Iteration=59, var_wn=0.0769836 +fixed_point_iteration:Iteration=60, var_wn=0.0767475 +fixed_point_iteration:Iteration=61, var_wn=0.0765213 +fixed_point_iteration:Iteration=62, var_wn=0.0763044 +fixed_point_iteration:Iteration=63, var_wn=0.0760964 +fixed_point_iteration:Iteration=64, var_wn=0.0758969 +fixed_point_iteration:Iteration=65, var_wn=0.0757056 +fixed_point_iteration:Iteration=66, var_wn=0.075522 +fixed_point_iteration:Iteration=67, var_wn=0.0753457 +fixed_point_iteration:Iteration=68, var_wn=0.0751764 +fixed_point_iteration:Iteration=69, var_wn=0.0750139 +fixed_point_iteration:Iteration=70, var_wn=0.0748578 +fixed_point_iteration:Iteration=71, var_wn=0.0747078 +fixed_point_iteration:Iteration=72, var_wn=0.0745637 +fixed_point_iteration:Iteration=73, var_wn=0.0744251 +fixed_point_iteration:Iteration=74, var_wn=0.0742919 +fixed_point_iteration:Iteration=75, var_wn=0.0741639 +fixed_point_iteration:Iteration=76, var_wn=0.0740407 +fixed_point_iteration:Iteration=77, var_wn=0.0739223 +fixed_point_iteration:Iteration=78, var_wn=0.0738083 +fixed_point_iteration:Iteration=79, var_wn=0.0736987 +fixed_point_iteration:Iteration=80, var_wn=0.0735932 +fixed_point_iteration:Iteration=81, var_wn=0.0734916 +fixed_point_iteration:Iteration=82, var_wn=0.0733939 +fixed_point_iteration:Iteration=83, var_wn=0.0732998 +fixed_point_iteration:Iteration=84, var_wn=0.0732091 +fixed_point_iteration:Iteration=85, var_wn=0.0731219 +fixed_point_iteration:Iteration=86, var_wn=0.0730379 +fixed_point_iteration:Iteration=87, var_wn=0.0729569 +fixed_point_iteration:Iteration=88, var_wn=0.072879 +fixed_point_iteration:Iteration=89, var_wn=0.0728038 +fixed_point_iteration:Iteration=90, var_wn=0.0727315 +fixed_point_iteration:Iteration=91, var_wn=0.0726617 +fixed_point_iteration:Iteration=92, var_wn=0.0725945 +fixed_point_iteration:Iteration=93, var_wn=0.0725298 +fixed_point_iteration:Iteration=94, var_wn=0.0724673 +fixed_point_iteration:Iteration=95, var_wn=0.0724072 +fixed_point_iteration:Iteration=96, var_wn=0.0723491 +fixed_point_iteration:Iteration=97, var_wn=0.0722932 +fixed_point_iteration:Iteration=98, var_wn=0.0722393 +fixed_point_iteration:Iteration=99, var_wn=0.0721873 +fixed_point_iteration:Iteration=100, var_wn=0.0721372 +fixed_point_iteration:Iteration=101, var_wn=0.0720888 +fixed_point_iteration:Iteration=102, var_wn=0.0720422 +fixed_point_iteration:Iteration=103, var_wn=0.0719972 +fixed_point_iteration:Iteration=104, var_wn=0.0719538 +fixed_point_iteration:Iteration=105, var_wn=0.0719119 +fixed_point_iteration:Iteration=106, var_wn=0.0718716 +fixed_point_iteration:Iteration=107, var_wn=0.0718326 +fixed_point_iteration:Iteration=108, var_wn=0.0717951 +fixed_point_iteration:Iteration=109, var_wn=0.0717588 +fixed_point_iteration:Iteration=110, var_wn=0.0717238 +fixed_point_iteration:Iteration=111, var_wn=0.0716901 +fixed_point_iteration:Iteration=112, var_wn=0.0716575 +fixed_point_iteration:Iteration=113, var_wn=0.0716261 +fixed_point_iteration:Iteration=114, var_wn=0.0715957 +fixed_point_iteration:Iteration=115, var_wn=0.0715664 +fixed_point_iteration:Iteration=116, var_wn=0.0715382 +fixed_point_iteration:Iteration=117, var_wn=0.0715109 +fixed_point_iteration:Iteration=118, var_wn=0.0714846 +fixed_point_iteration:Iteration=119, var_wn=0.0714592 +fixed_point_iteration:Iteration=120, var_wn=0.0714347 +fixed_point_iteration:Iteration=121, var_wn=0.071411 +fixed_point_iteration:Iteration=122, var_wn=0.0713881 +fixed_point_iteration:Iteration=123, var_wn=0.0713661 +fixed_point_iteration:Iteration=124, var_wn=0.0713448 +fixed_point_iteration:Iteration=125, var_wn=0.0713242 +fixed_point_iteration:Iteration=126, var_wn=0.0713044 +fixed_point_iteration:Iteration=127, var_wn=0.0712852 +fixed_point_iteration:Iteration=128, var_wn=0.0712667 +fixed_point_iteration:Iteration=129, var_wn=0.0712488 +fixed_point_iteration:Iteration=130, var_wn=0.0712316 +fixed_point_iteration:Iteration=131, var_wn=0.0712149 +fixed_point_iteration:Iteration=132, var_wn=0.0711988 +fixed_point_iteration:Iteration=133, var_wn=0.0711833 +fixed_point_iteration:Iteration=134, var_wn=0.0711683 +fixed_point_iteration:Iteration=135, var_wn=0.0711538 +fixed_point_iteration:Iteration=136, var_wn=0.0711398 +fixed_point_iteration:Iteration=137, var_wn=0.0711263 +fixed_point_iteration:Iteration=138, var_wn=0.0711133 +fixed_point_iteration:Iteration=139, var_wn=0.0711007 +fixed_point_iteration:Iteration=140, var_wn=0.0710885 +fixed_point_iteration:Iteration=141, var_wn=0.0710768 +fixed_point_iteration:Iteration=142, var_wn=0.0710654 +fixed_point_iteration:Iteration=143, var_wn=0.0710545 +fixed_point_iteration:Iteration=144, var_wn=0.0710439 +fixed_point_iteration:Iteration=145, var_wn=0.0710337 +fixed_point_iteration:Iteration=146, var_wn=0.0710238 +WN variance = 0.0710238 Partition size = (34,13,13) Finished part [1/96] Finished part [2/96] Finished part [3/96] Finished part [4/96] Finished part [5/96] Finished part [6/96] Finished part [7/96] Finished part [8/96] Finished part [9/96] Finished part [10/96] Finished part [11/96] Finished part [12/96] Finished part [13/96] Finished part [14/96] Finished part [15/96] Finished part [16/96] Finished part [17/96] Finished part [18/96] Finished part [19/96] Finished part [20/96] Finished part [21/96] Finished part [22/96] Finished part [23/96] Finished part [24/96] Finished part [25/96] Finished part [26/96] Finished part [27/96] Finished part [28/96] Finished part [29/96] Finished part [30/96] Finished part [31/96] Finished part [32/96] Finished part [33/96] Finished part [34/96] Finished part [35/96] Finished part [36/96] Finished part [37/96] Finished part [38/96] Finished part [39/96] Finished part [40/96] Finished part [41/96] Finished part [42/96] Finished part [43/96] Finished part [44/96] Finished part [45/96] Finished part [46/96] Finished part [47/96] Finished part [48/96] Finished part [49/96] Finished part [50/96] Finished part [51/96] Finished part [52/96] Finished part [53/96] Finished part [54/96] Finished part [55/96] Finished part [56/96] Finished part [57/96] Finished part [58/96] Finished part [59/96] Finished part [60/96] Finished part [61/96] Finished part [62/96] Finished part [63/96] Finished part [64/96] Finished part [65/96] Finished part [66/96] Finished part [67/96] Finished part [68/96] Finished part [69/96] Finished part [70/96] Finished part [71/96] Finished part [72/96] Finished part [73/96] Finished part [74/96] Finished part [75/96] Finished part [76/96] Finished part [77/96] Finished part [78/96] Finished part [79/96] Finished part [80/96] Finished part [81/96] Finished part [82/96] Finished part [83/96] Finished part [84/96] Finished part [85/96] Finished part [86/96] Finished part [87/96] Finished part [88/96] Finished part [89/96] Finished part [90/96] Finished part [91/96] Finished part [92/96] Finished part [93/96] Finished part [94/96] Finished part [95/96] Finished part [96/96] prfl dev_to_host_copy = 0us -prfl fft = 64818us -prfl second_function = 1835us -prfl window_function = 663147us +prfl fft = 74121us +prfl second_function = 1833us +prfl window_function = 693556us 'zeta.csv' -> 'zeta-skewnormal.csv' NIT for standing waves Input file = /home/igankevich/workspace/arma-thesis/config/nit-standing-none @@ -1274,9 +1133,9 @@ Partition size = (21,10,10) Finished part [1/160] Finished part [2/160] Finished part [3/160] Finished part [4/160] Finished part [5/160] Finished part [6/160] Finished part [7/160] Finished part [8/160] Finished part [9/160] Finished part [10/160] Finished part [11/160] Finished part [12/160] Finished part [13/160] Finished part [14/160] Finished part [15/160] Finished part [16/160] Finished part [17/160] Finished part [18/160] Finished part [19/160] Finished part [20/160] Finished part [21/160] Finished part [22/160] Finished part [23/160] Finished part [24/160] Finished part [25/160] Finished part [26/160] Finished part [27/160] Finished part [28/160] Finished part [29/160] Finished part [30/160] Finished part [31/160] Finished part [32/160] Finished part [33/160] Finished part [34/160] Finished part [35/160] Finished part [36/160] Finished part [37/160] Finished part [38/160] Finished part [39/160] Finished part [40/160] Finished part [41/160] Finished part [42/160] Finished part [43/160] Finished part [44/160] Finished part [45/160] Finished part [46/160] Finished part [47/160] Finished part [48/160] Finished part [49/160] Finished part [50/160] Finished part [51/160] Finished part [52/160] Finished part [53/160] Finished part [54/160] Finished part [55/160] Finished part [56/160] Finished part [57/160] Finished part [58/160] Finished part [59/160] Finished part [60/160] Finished part [61/160] Finished part [62/160] Finished part [63/160] Finished part [64/160] Finished part [65/160] Finished part [66/160] Finished part [67/160] Finished part [68/160] Finished part [69/160] Finished part [70/160] Finished part [71/160] Finished part [72/160] Finished part [73/160] Finished part [74/160] Finished part [75/160] Finished part [76/160] Finished part [77/160] Finished part [78/160] Finished part [79/160] Finished part [80/160] Finished part [81/160] Finished part [82/160] Finished part [83/160] Finished part [84/160] Finished part [85/160] Finished part [86/160] Finished part [87/160] Finished part [88/160] Finished part [89/160] Finished part [90/160] Finished part [91/160] Finished part [92/160] Finished part [93/160] Finished part [94/160] Finished part [95/160] Finished part [96/160] Finished part [97/160] Finished part [98/160] Finished part [99/160] Finished part [100/160] Finished part [101/160] Finished part [102/160] Finished part [103/160] Finished part [104/160] Finished part [105/160] Finished part [106/160] Finished part [107/160] Finished part [108/160] Finished part [109/160] Finished part [110/160] Finished part [111/160] Finished part [112/160] Finished part [113/160] Finished part [114/160] Finished part [115/160] Finished part [116/160] Finished part [117/160] Finished part [118/160] Finished part [119/160] Finished part [120/160] Finished part [121/160] Finished part [122/160] Finished part [123/160] Finished part [124/160] Finished part [125/160] Finished part [126/160] Finished part [127/160] Finished part [128/160] Finished part [129/160] Finished part [130/160] Finished part [131/160] Finished part [132/160] Finished part [133/160] Finished part [134/160] Finished part [135/160] Finished part [136/160] Finished part [137/160] Finished part [138/160] Finished part [139/160] Finished part [140/160] Finished part [141/160] Finished part [142/160] Finished part [143/160] Finished part [144/160] Finished part [145/160] Finished part [146/160] Finished part [147/160] Finished part [148/160] Finished part [149/160] Finished part [150/160] Finished part [151/160] Finished part [152/160] Finished part [153/160] Finished part [154/160] Finished part [155/160] Finished part [156/160] Finished part [157/160] Finished part [158/160] Finished part [159/160] Finished part [160/160] Zeta size = (192,32,32) prfl dev_to_host_copy = 0us -prfl fft = 67400us -prfl second_function = 1751us -prfl window_function = 705738us +prfl fft = 120726us +prfl second_function = 2048us +prfl window_function = 963006us 'zeta.csv' -> 'zeta-none.csv' Input file = /home/igankevich/workspace/arma-thesis/config/nit-standing-gramcharlier Output grid size = (200,40,40) @@ -1314,9 +1173,9 @@ Partition size = (21,10,10) Finished part [1/160] Finished part [2/160] Finished part [3/160] Finished part [4/160] Finished part [5/160] Finished part [6/160] Finished part [7/160] Finished part [8/160] Finished part [9/160] Finished part [10/160] Finished part [11/160] Finished part [12/160] Finished part [13/160] Finished part [14/160] Finished part [15/160] Finished part [16/160] Finished part [17/160] Finished part [18/160] Finished part [19/160] Finished part [20/160] Finished part [21/160] Finished part [22/160] Finished part [23/160] Finished part [24/160] Finished part [25/160] Finished part [26/160] Finished part [27/160] Finished part [28/160] Finished part [29/160] Finished part [30/160] Finished part [31/160] Finished part [32/160] Finished part [33/160] Finished part [34/160] Finished part [35/160] Finished part [36/160] Finished part [37/160] Finished part [38/160] Finished part [39/160] Finished part [40/160] Finished part [41/160] Finished part [42/160] Finished part [43/160] Finished part [44/160] Finished part [45/160] Finished part [46/160] Finished part [47/160] Finished part [48/160] Finished part [49/160] Finished part [50/160] Finished part [51/160] Finished part [52/160] Finished part [53/160] Finished part [54/160] Finished part [55/160] Finished part [56/160] Finished part [57/160] Finished part [58/160] Finished part [59/160] Finished part [60/160] Finished part [61/160] Finished part [62/160] Finished part [63/160] Finished part [64/160] Finished part [65/160] Finished part [66/160] Finished part [67/160] Finished part [68/160] Finished part [69/160] Finished part [70/160] Finished part [71/160] Finished part [72/160] Finished part [73/160] Finished part [74/160] Finished part [75/160] Finished part [76/160] Finished part [77/160] Finished part [78/160] Finished part [79/160] Finished part [80/160] Finished part [81/160] Finished part [82/160] Finished part [83/160] Finished part [84/160] Finished part [85/160] Finished part [86/160] Finished part [87/160] Finished part [88/160] Finished part [89/160] Finished part [90/160] Finished part [91/160] Finished part [92/160] Finished part [93/160] Finished part [94/160] Finished part [95/160] Finished part [96/160] Finished part [97/160] Finished part [98/160] Finished part [99/160] Finished part [100/160] Finished part [101/160] Finished part [102/160] Finished part [103/160] Finished part [104/160] Finished part [105/160] Finished part [106/160] Finished part [107/160] Finished part [108/160] Finished part [109/160] Finished part [110/160] Finished part [111/160] Finished part [112/160] Finished part [113/160] Finished part [114/160] Finished part [115/160] Finished part [116/160] Finished part [117/160] Finished part [118/160] Finished part [119/160] Finished part [120/160] Finished part [121/160] Finished part [122/160] Finished part [123/160] Finished part [124/160] Finished part [125/160] Finished part [126/160] Finished part [127/160] Finished part [128/160] Finished part [129/160] Finished part [130/160] Finished part [131/160] Finished part [132/160] Finished part [133/160] Finished part [134/160] Finished part [135/160] Finished part [136/160] Finished part [137/160] Finished part [138/160] Finished part [139/160] Finished part [140/160] Finished part [141/160] Finished part [142/160] Finished part [143/160] Finished part [144/160] Finished part [145/160] Finished part [146/160] Finished part [147/160] Finished part [148/160] Finished part [149/160] Finished part [150/160] Finished part [151/160] Finished part [152/160] Finished part [153/160] Finished part [154/160] Finished part [155/160] Finished part [156/160] Finished part [157/160] Finished part [158/160] Finished part [159/160] Finished part [160/160] Zeta size = (192,32,32) prfl dev_to_host_copy = 0us -prfl fft = 67196us -prfl second_function = 1830us -prfl window_function = 664720us +prfl fft = 88660us +prfl second_function = 1828us +prfl window_function = 720888us 'zeta.csv' -> 'zeta-gramcharlier.csv' Input file = /home/igankevich/workspace/arma-thesis/config/nit-standing-skewnormal Output grid size = (200,40,40) @@ -1354,9 +1213,9 @@ Partition size = (21,10,10) Finished part [1/160] Finished part [2/160] Finished part [3/160] Finished part [4/160] Finished part [5/160] Finished part [6/160] Finished part [7/160] Finished part [8/160] Finished part [9/160] Finished part [10/160] Finished part [11/160] Finished part [12/160] Finished part [13/160] Finished part [14/160] Finished part [15/160] Finished part [16/160] Finished part [17/160] Finished part [18/160] Finished part [19/160] Finished part [20/160] Finished part [21/160] Finished part [22/160] Finished part [23/160] Finished part [24/160] Finished part [25/160] Finished part [26/160] Finished part [27/160] Finished part [28/160] Finished part [29/160] Finished part [30/160] Finished part [31/160] Finished part [32/160] Finished part [33/160] Finished part [34/160] Finished part [35/160] Finished part [36/160] Finished part [37/160] Finished part [38/160] Finished part [39/160] Finished part [40/160] Finished part [41/160] Finished part [42/160] Finished part [43/160] Finished part [44/160] Finished part [45/160] Finished part [46/160] Finished part [47/160] Finished part [48/160] Finished part [49/160] Finished part [50/160] Finished part [51/160] Finished part [52/160] Finished part [53/160] Finished part [54/160] Finished part [55/160] Finished part [56/160] Finished part [57/160] Finished part [58/160] Finished part [59/160] Finished part [60/160] Finished part [61/160] Finished part [62/160] Finished part [63/160] Finished part [64/160] Finished part [65/160] Finished part [66/160] Finished part [67/160] Finished part [68/160] Finished part [69/160] Finished part [70/160] Finished part [71/160] Finished part [72/160] Finished part [73/160] Finished part [74/160] Finished part [75/160] Finished part [76/160] Finished part [77/160] Finished part [78/160] Finished part [79/160] Finished part [80/160] Finished part [81/160] Finished part [82/160] Finished part [83/160] Finished part [84/160] Finished part [85/160] Finished part [86/160] Finished part [87/160] Finished part [88/160] Finished part [89/160] Finished part [90/160] Finished part [91/160] Finished part [92/160] Finished part [93/160] Finished part [94/160] Finished part [95/160] Finished part [96/160] Finished part [97/160] Finished part [98/160] Finished part [99/160] Finished part [100/160] Finished part [101/160] Finished part [102/160] Finished part [103/160] Finished part [104/160] Finished part [105/160] Finished part [106/160] Finished part [107/160] Finished part [108/160] Finished part [109/160] Finished part [110/160] Finished part [111/160] Finished part [112/160] Finished part [113/160] Finished part [114/160] Finished part [115/160] Finished part [116/160] Finished part [117/160] Finished part [118/160] Finished part [119/160] Finished part [120/160] Finished part [121/160] Finished part [122/160] Finished part [123/160] Finished part [124/160] Finished part [125/160] Finished part [126/160] Finished part [127/160] Finished part [128/160] Finished part [129/160] Finished part [130/160] Finished part [131/160] Finished part [132/160] Finished part [133/160] Finished part [134/160] Finished part [135/160] Finished part [136/160] Finished part [137/160] Finished part [138/160] Finished part [139/160] Finished part [140/160] Finished part [141/160] Finished part [142/160] Finished part [143/160] Finished part [144/160] Finished part [145/160] Finished part [146/160] Finished part [147/160] Finished part [148/160] Finished part [149/160] Finished part [150/160] Finished part [151/160] Finished part [152/160] Finished part [153/160] Finished part [154/160] Finished part [155/160] Finished part [156/160] Finished part [157/160] Finished part [158/160] Finished part [159/160] Finished part [160/160] Zeta size = (192,32,32) prfl dev_to_host_copy = 0us -prfl fft = 71407us -prfl second_function = 1738us -prfl window_function = 670597us +prfl fft = 86923us +prfl second_function = 1889us +prfl window_function = 842185us 'zeta.csv' -> 'zeta-skewnormal.csv' #+end_example @@ -2375,10 +2234,11 @@ polynomial yields which simplifies the former equation. Optimal number of coefficients \(C_m\) is determined by computing them sequentially and stopping when variances of both fields become equal with desired accuracy \(\epsilon\): -\begin{equation*} +\begin{equation} + \label{eq-nit-error} \left| \Var{z} - \sum\limits_{k=0}^m \frac{C_k^2}{k!} \right| \leq \epsilon. -\end{equation*} +\end{equation} In\nbsp{}cite:boukhanovsky1997thesis the author suggests using polynomial approximation \(f(y)\) also for wavy surface transformation, however, in @@ -2958,27 +2818,29 @@ arma.plot_velocity( #+RESULTS: fig-velocity-field-2d [[file:build/large-and-small-amplitude-velocity-field-comparison.pdf]] -*** Verification of nonlinear inertialess transformation +*** DONE Verification of nonlinear inertialess transformation +CLOSED: [2017-06-12 Пн 21:05] In order to measure the effect of NIT on the shape of the resulting wavy surface, three realisations were generated: - realisation with Gaussian distribution (without NIT), -- realisation with Gram---Charlier series based distribution, and -- realisation with skew normal distribution. +- realisation with Gram---Charlier series (GCS) based distribution (with + \(\gamma_1=2.25,\gamma_2=0.4\)), and +- realisation with skew normal distribution (with \(\alpha=1\)). The seed of PRNG was set to be the same for all progrmme executions to make ARMA model produce the same values for each realisation. There we two experiments: on for standing and one for propagating waves with ACFs similar to the ones in section\nbsp{}[[#sec-wave-acfs]]. -The results of the experiment are twofold: while the experiment showed that +The results of the experiments are twofold: while the experiment showed that applying NIT with GCS-based distribution makes wave profiles steeper, the same is not true for skew normal distribution (fig.\nbsp{}[[fig-nonlinear]]). Using this distribution results in wavy surface each \(z\)-coordinate of which is always greater or equal to nought. So, skew normal distribution is unsuitable for NIT. -NIT increases the wave height of standing waves and decreases the wave height of -propagating waves. Since wave height depends on ACF, this is a consequence of -ACF being different for each wave type. For both wave types the wave steepness -is increased. Finally, increasing either skewness or kurtosis parameter of -GCS-based distribution increases both wave steepness and wave height. +NIT increases the wave height and wave steepness for both standing and +propagating waves. Increasing either skewness or kurtosis parameter of GCS-based +distribution increases both wave steepness and wave height. The error of ACF +approximation (eq.\nbsp{}eqref:eq-nit-error) ranges from 0.20 for GCS-based +distribution to 0.70 for skew normal distribution. #+name: fig-nit #+header: :width 5 :height 5 :pointsize 8 @@ -2996,10 +2858,57 @@ arma.plot_nonlinear(file.path("build", "nit-standing"), args) #+end_src #+label: fig-nit +#+caption: Wavy surface slices with different distributions of wave elevation (Gaussian, Gram---Charlier series based and skew normal). #+RESULTS: fig-nit [[file:build/nit.pdf]] +#+name: tab-nit-error +#+caption: Errors of ACF approximations (differences in variances) for different wave elevation distributions. +| Wave type | Distribution | Error | No. of coef. | Wave height | +|-------------+--------------+-------+--------------+-------------| +| propagating | Gaussian | | | 2.41 | +| propagating | GCS-based | 0.20 | 2 | 2.75 | +| propagating | skew normal | 0.70 | 3 | 1.37 | +| standing | Gaussian | | | 1.73 | +| standing | GCS-based | 0.26 | 2 | 1.96 | +| standing | skew normal | 0.70 | 3 | 0.94 | + +To summarise, the only test case that showed acceptable results is realisation +with GCS-based distribution for both standing and propagating waves. Skew normal +distribution realisations have warped wavy surface for both types of waves. +GCS-based realisations have large error of ACF approximation, which results in +increase of wave height. The reason for the large error is that Gram---Charlier +series are not accurate as they do not converge for all possible +functions\nbsp{}cite:wallace1958asymptotic. Despite the large error, the change +in wave height is small. + +**** Wave height :noexport: +:PROPERTIES: +:header-args:R: :results output org +:END: + +#+header: +#+begin_src R :results output org +source(file.path("R", "nonlinear.R")) +propagating <- arma.print_wave_height(file.path("build", "nit-propagating")) +standing <- arma.print_wave_height(file.path("build", "nit-standing")) +result <- data.frame( + h1=c(propagating$h1, standing$h1), + h2=c(propagating$h2, standing$h2), + h3=c(propagating$h3, standing$h3) +) +rownames(result) <- c('propagating', 'standing') +colnames(result) <- c('none', 'gcs', 'sn') +ascii(result) +#+end_src +#+RESULTS: +#+BEGIN_SRC org +| | none | gcs | sn | +|-------------+------+------+------| +| propagating | 2.41 | 2.75 | 1.37 | +| standing | 1.73 | 1.96 | 0.94 | +#+END_SRC *** Non-physical nature of ARMA model ARMA model, owing to its non-physical nature, does not have the notion of ocean diff --git a/bib/refs.bib b/bib/refs.bib @@ -1799,3 +1799,14 @@ art_number={6710358}, pages = {1203--1233}, url = {http://www.graphviz.org/} } + +@article{wallace1958asymptotic, + title={Asymptotic approximations to distributions}, + author={Wallace, David L}, + journal={The Annals of Mathematical Statistics}, + volume={29}, + number={3}, + pages={635--654}, + year={1958}, + publisher={JSTOR} +}