commit bf003f2cd11b230948ccd480e0146ea6edf6f924
parent f0b6a44a07d725beddcf8395b9c21273a4146873
Author: Ivan Gankevich <igankevich@ya.ru>
Date: Mon, 12 Jun 2017 21:55:42 +0300
Add more data from the experiments. Write discussion.
Diffstat:
3 files changed, 606 insertions(+), 669 deletions(-)
diff --git a/R/nonlinear.R b/R/nonlinear.R
@@ -42,3 +42,20 @@ arma.plot_nonlinear <- function (dirname, args) {
lty=paste(args$linetypes)
)
}
+
+arma.wave_height <- function (realisation) {
+ sqrt(2*pi*var(realisation))
+}
+
+arma.print_wave_height <- function (dirname) {
+ zeta_none <- read.csv(file.path(dirname, 'zeta-none.csv'))
+ zeta_gcs <- read.csv(file.path(dirname, 'zeta-gramcharlier.csv'))
+ zeta_sn <- read.csv(file.path(dirname, 'zeta-skewnormal.csv'))
+ library('ascii')
+ options(asciiType='org')
+ data.frame(
+ h1=arma.wave_height(zeta_none$z),
+ h2=arma.wave_height(zeta_gcs$z),
+ h3=arma.wave_height(zeta_sn$z)
+ )
+}
diff --git a/arma-thesis.org b/arma-thesis.org
@@ -589,443 +589,163 @@ MA model = order=(20,10,10),acf.shape=(20,10,10),algorithm
Velocity potential solver name = N4arma8velocity21High_amplitude_solverIdEE
Velocity potential solver = wnmax=from (0,0) to (0,0.25) npoints (2,2),depth=12,domain=from (10,-12) to (10,3) npoints (1,128)
NIT transform = none
-ACF variance = 5
-fixed_point_iteration:Iteration=0, var_wn=2.70831
-fixed_point_iteration:Iteration=1, var_wn=1.93791
-fixed_point_iteration:Iteration=2, var_wn=1.54801
-fixed_point_iteration:Iteration=3, var_wn=1.31202
-fixed_point_iteration:Iteration=4, var_wn=1.15328
-fixed_point_iteration:Iteration=5, var_wn=1.0386
-fixed_point_iteration:Iteration=6, var_wn=0.951442
-fixed_point_iteration:Iteration=7, var_wn=0.882674
-fixed_point_iteration:Iteration=8, var_wn=0.82688
-fixed_point_iteration:Iteration=9, var_wn=0.780623
-fixed_point_iteration:Iteration=10, var_wn=0.74161
-fixed_point_iteration:Iteration=11, var_wn=0.708244
-fixed_point_iteration:Iteration=12, var_wn=0.679374
-fixed_point_iteration:Iteration=13, var_wn=0.654145
-fixed_point_iteration:Iteration=14, var_wn=0.63191
-fixed_point_iteration:Iteration=15, var_wn=0.612168
-fixed_point_iteration:Iteration=16, var_wn=0.594523
-fixed_point_iteration:Iteration=17, var_wn=0.578663
-fixed_point_iteration:Iteration=18, var_wn=0.564333
-fixed_point_iteration:Iteration=19, var_wn=0.551325
-fixed_point_iteration:Iteration=20, var_wn=0.539469
-fixed_point_iteration:Iteration=21, var_wn=0.528623
-fixed_point_iteration:Iteration=22, var_wn=0.518666
-fixed_point_iteration:Iteration=23, var_wn=0.509497
-fixed_point_iteration:Iteration=24, var_wn=0.50103
-fixed_point_iteration:Iteration=25, var_wn=0.493191
-fixed_point_iteration:Iteration=26, var_wn=0.485915
-fixed_point_iteration:Iteration=27, var_wn=0.479148
-fixed_point_iteration:Iteration=28, var_wn=0.472841
-fixed_point_iteration:Iteration=29, var_wn=0.466951
-fixed_point_iteration:Iteration=30, var_wn=0.461442
-fixed_point_iteration:Iteration=31, var_wn=0.456279
-fixed_point_iteration:Iteration=32, var_wn=0.451435
-fixed_point_iteration:Iteration=33, var_wn=0.446882
-fixed_point_iteration:Iteration=34, var_wn=0.442597
-fixed_point_iteration:Iteration=35, var_wn=0.43856
-fixed_point_iteration:Iteration=36, var_wn=0.434752
-fixed_point_iteration:Iteration=37, var_wn=0.431155
-fixed_point_iteration:Iteration=38, var_wn=0.427755
-fixed_point_iteration:Iteration=39, var_wn=0.424537
-fixed_point_iteration:Iteration=40, var_wn=0.42149
-fixed_point_iteration:Iteration=41, var_wn=0.4186
-fixed_point_iteration:Iteration=42, var_wn=0.415859
-fixed_point_iteration:Iteration=43, var_wn=0.413256
-fixed_point_iteration:Iteration=44, var_wn=0.410782
-fixed_point_iteration:Iteration=45, var_wn=0.408429
-fixed_point_iteration:Iteration=46, var_wn=0.406191
-fixed_point_iteration:Iteration=47, var_wn=0.404059
-fixed_point_iteration:Iteration=48, var_wn=0.402028
-fixed_point_iteration:Iteration=49, var_wn=0.400092
-fixed_point_iteration:Iteration=50, var_wn=0.398246
-fixed_point_iteration:Iteration=51, var_wn=0.396483
-fixed_point_iteration:Iteration=52, var_wn=0.3948
-fixed_point_iteration:Iteration=53, var_wn=0.393193
-fixed_point_iteration:Iteration=54, var_wn=0.391656
-fixed_point_iteration:Iteration=55, var_wn=0.390187
-fixed_point_iteration:Iteration=56, var_wn=0.388782
-fixed_point_iteration:Iteration=57, var_wn=0.387438
-fixed_point_iteration:Iteration=58, var_wn=0.386151
-fixed_point_iteration:Iteration=59, var_wn=0.384918
-fixed_point_iteration:Iteration=60, var_wn=0.383738
-fixed_point_iteration:Iteration=61, var_wn=0.382606
-fixed_point_iteration:Iteration=62, var_wn=0.381522
-fixed_point_iteration:Iteration=63, var_wn=0.380482
-fixed_point_iteration:Iteration=64, var_wn=0.379485
-fixed_point_iteration:Iteration=65, var_wn=0.378528
-fixed_point_iteration:Iteration=66, var_wn=0.37761
-fixed_point_iteration:Iteration=67, var_wn=0.376728
-fixed_point_iteration:Iteration=68, var_wn=0.375882
-fixed_point_iteration:Iteration=69, var_wn=0.37507
-fixed_point_iteration:Iteration=70, var_wn=0.374289
-fixed_point_iteration:Iteration=71, var_wn=0.373539
-fixed_point_iteration:Iteration=72, var_wn=0.372818
-fixed_point_iteration:Iteration=73, var_wn=0.372126
-fixed_point_iteration:Iteration=74, var_wn=0.37146
-fixed_point_iteration:Iteration=75, var_wn=0.370819
-fixed_point_iteration:Iteration=76, var_wn=0.370204
-fixed_point_iteration:Iteration=77, var_wn=0.369611
-fixed_point_iteration:Iteration=78, var_wn=0.369042
-fixed_point_iteration:Iteration=79, var_wn=0.368493
-fixed_point_iteration:Iteration=80, var_wn=0.367966
-fixed_point_iteration:Iteration=81, var_wn=0.367458
-fixed_point_iteration:Iteration=82, var_wn=0.366969
-fixed_point_iteration:Iteration=83, var_wn=0.366499
-fixed_point_iteration:Iteration=84, var_wn=0.366046
-fixed_point_iteration:Iteration=85, var_wn=0.365609
-fixed_point_iteration:Iteration=86, var_wn=0.365189
-fixed_point_iteration:Iteration=87, var_wn=0.364785
-fixed_point_iteration:Iteration=88, var_wn=0.364395
-fixed_point_iteration:Iteration=89, var_wn=0.364019
-fixed_point_iteration:Iteration=90, var_wn=0.363657
-fixed_point_iteration:Iteration=91, var_wn=0.363309
-fixed_point_iteration:Iteration=92, var_wn=0.362973
-fixed_point_iteration:Iteration=93, var_wn=0.362649
-fixed_point_iteration:Iteration=94, var_wn=0.362337
-fixed_point_iteration:Iteration=95, var_wn=0.362036
-fixed_point_iteration:Iteration=96, var_wn=0.361746
-fixed_point_iteration:Iteration=97, var_wn=0.361466
-fixed_point_iteration:Iteration=98, var_wn=0.361196
-fixed_point_iteration:Iteration=99, var_wn=0.360936
-fixed_point_iteration:Iteration=100, var_wn=0.360686
-fixed_point_iteration:Iteration=101, var_wn=0.360444
-fixed_point_iteration:Iteration=102, var_wn=0.360211
-fixed_point_iteration:Iteration=103, var_wn=0.359986
-fixed_point_iteration:Iteration=104, var_wn=0.359769
-fixed_point_iteration:Iteration=105, var_wn=0.35956
-fixed_point_iteration:Iteration=106, var_wn=0.359358
-fixed_point_iteration:Iteration=107, var_wn=0.359163
-fixed_point_iteration:Iteration=108, var_wn=0.358975
-fixed_point_iteration:Iteration=109, var_wn=0.358794
-fixed_point_iteration:Iteration=110, var_wn=0.358619
-fixed_point_iteration:Iteration=111, var_wn=0.35845
-fixed_point_iteration:Iteration=112, var_wn=0.358287
-fixed_point_iteration:Iteration=113, var_wn=0.35813
-fixed_point_iteration:Iteration=114, var_wn=0.357979
-fixed_point_iteration:Iteration=115, var_wn=0.357832
-fixed_point_iteration:Iteration=116, var_wn=0.357691
-fixed_point_iteration:Iteration=117, var_wn=0.357555
-fixed_point_iteration:Iteration=118, var_wn=0.357423
-fixed_point_iteration:Iteration=119, var_wn=0.357296
-fixed_point_iteration:Iteration=120, var_wn=0.357173
-fixed_point_iteration:Iteration=121, var_wn=0.357055
-fixed_point_iteration:Iteration=122, var_wn=0.356941
-fixed_point_iteration:Iteration=123, var_wn=0.35683
-fixed_point_iteration:Iteration=124, var_wn=0.356724
-fixed_point_iteration:Iteration=125, var_wn=0.356621
-fixed_point_iteration:Iteration=126, var_wn=0.356522
-fixed_point_iteration:Iteration=127, var_wn=0.356426
-fixed_point_iteration:Iteration=128, var_wn=0.356334
-fixed_point_iteration:Iteration=129, var_wn=0.356244
-fixed_point_iteration:Iteration=130, var_wn=0.356158
-fixed_point_iteration:Iteration=131, var_wn=0.356075
-fixed_point_iteration:Iteration=132, var_wn=0.355994
-fixed_point_iteration:Iteration=133, var_wn=0.355917
-fixed_point_iteration:Iteration=134, var_wn=0.355842
-fixed_point_iteration:Iteration=135, var_wn=0.355769
-fixed_point_iteration:Iteration=136, var_wn=0.355699
-fixed_point_iteration:Iteration=137, var_wn=0.355632
-fixed_point_iteration:Iteration=138, var_wn=0.355566
-fixed_point_iteration:Iteration=139, var_wn=0.355504
-fixed_point_iteration:Iteration=140, var_wn=0.355443
-fixed_point_iteration:Iteration=141, var_wn=0.355384
-fixed_point_iteration:Iteration=142, var_wn=0.355327
-fixed_point_iteration:Iteration=143, var_wn=0.355272
-fixed_point_iteration:Iteration=144, var_wn=0.35522
-fixed_point_iteration:Iteration=145, var_wn=0.355168
-fixed_point_iteration:Iteration=146, var_wn=0.355119
-fixed_point_iteration:Iteration=147, var_wn=0.355071
-fixed_point_iteration:Iteration=148, var_wn=0.355025
-fixed_point_iteration:Iteration=149, var_wn=0.354981
-fixed_point_iteration:Iteration=150, var_wn=0.354938
-fixed_point_iteration:Iteration=151, var_wn=0.354896
-fixed_point_iteration:Iteration=152, var_wn=0.354856
-fixed_point_iteration:Iteration=153, var_wn=0.354818
-fixed_point_iteration:Iteration=154, var_wn=0.35478
-fixed_point_iteration:Iteration=155, var_wn=0.354744
-fixed_point_iteration:Iteration=156, var_wn=0.354709
-fixed_point_iteration:Iteration=157, var_wn=0.354676
-fixed_point_iteration:Iteration=158, var_wn=0.354643
-fixed_point_iteration:Iteration=159, var_wn=0.354612
-fixed_point_iteration:Iteration=160, var_wn=0.354581
-fixed_point_iteration:Iteration=161, var_wn=0.354552
-fixed_point_iteration:Iteration=162, var_wn=0.354523
-fixed_point_iteration:Iteration=163, var_wn=0.354496
-fixed_point_iteration:Iteration=164, var_wn=0.35447
-fixed_point_iteration:Iteration=165, var_wn=0.354444
-fixed_point_iteration:Iteration=166, var_wn=0.354419
-fixed_point_iteration:Iteration=167, var_wn=0.354396
-fixed_point_iteration:Iteration=168, var_wn=0.354373
-fixed_point_iteration:Iteration=169, var_wn=0.35435
-fixed_point_iteration:Iteration=170, var_wn=0.354329
-fixed_point_iteration:Iteration=171, var_wn=0.354308
-fixed_point_iteration:Iteration=172, var_wn=0.354288
-fixed_point_iteration:Iteration=173, var_wn=0.354269
-fixed_point_iteration:Iteration=174, var_wn=0.35425
-fixed_point_iteration:Iteration=175, var_wn=0.354232
-fixed_point_iteration:Iteration=176, var_wn=0.354214
-fixed_point_iteration:Iteration=177, var_wn=0.354197
-fixed_point_iteration:Iteration=178, var_wn=0.354181
-fixed_point_iteration:Iteration=179, var_wn=0.354165
-fixed_point_iteration:Iteration=180, var_wn=0.35415
-fixed_point_iteration:Iteration=181, var_wn=0.354135
-fixed_point_iteration:Iteration=182, var_wn=0.354121
-fixed_point_iteration:Iteration=183, var_wn=0.354107
-fixed_point_iteration:Iteration=184, var_wn=0.354094
-fixed_point_iteration:Iteration=185, var_wn=0.354081
-fixed_point_iteration:Iteration=186, var_wn=0.354069
-fixed_point_iteration:Iteration=187, var_wn=0.354057
-fixed_point_iteration:Iteration=188, var_wn=0.354046
-fixed_point_iteration:Iteration=189, var_wn=0.354034
-fixed_point_iteration:Iteration=190, var_wn=0.354024
-fixed_point_iteration:Iteration=191, var_wn=0.354013
-fixed_point_iteration:Iteration=192, var_wn=0.354003
-fixed_point_iteration:Iteration=193, var_wn=0.353993
-WN variance = 0.353993
-Partition size = (34,13,13)
-
Finished part [1/96]
Finished part [2/96]
Finished part [3/96]
Finished part [4/96]
Finished part [5/96]
Finished part [6/96]
Finished part [7/96]
Finished part [8/96]
Finished part [9/96]
Finished part [10/96]
Finished part [11/96]
Finished part [12/96]
Finished part [13/96]
Finished part [14/96]
Finished part [15/96]
Finished part [16/96]
Finished part [17/96]
Finished part [18/96]
Finished part [19/96]
Finished part [20/96]
Finished part [21/96]
Finished part [22/96]
Finished part [23/96]
Finished part [24/96]
Finished part [25/96]
Finished part [26/96]
Finished part [27/96]
Finished part [28/96]
Finished part [29/96]
Finished part [30/96]
Finished part [31/96]
Finished part [32/96]
Finished part [33/96]
Finished part [34/96]
Finished part [35/96]
Finished part [36/96]
Finished part [37/96]
Finished part [38/96]
Finished part [39/96]
Finished part [40/96]
Finished part [41/96]
Finished part [42/96]
Finished part [43/96]
Finished part [44/96]
Finished part [45/96]
Finished part [46/96]
Finished part [47/96]
Finished part [48/96]
Finished part [49/96]
Finished part [50/96]
Finished part [51/96]
Finished part [52/96]
Finished part [53/96]
Finished part [54/96]
Finished part [55/96]
Finished part [56/96]
Finished part [57/96]
Finished part [58/96]
Finished part [59/96]
Finished part [60/96]
Finished part [61/96]
Finished part [62/96]
Finished part [63/96]
Finished part [64/96]
Finished part [65/96]
Finished part [66/96]
Finished part [67/96]
Finished part [68/96]
Finished part [69/96]
Finished part [70/96]
Finished part [71/96]
Finished part [72/96]
Finished part [73/96]
Finished part [74/96]
Finished part [75/96]
Finished part [76/96]
Finished part [77/96]
Finished part [78/96]
Finished part [79/96]
Finished part [80/96]
Finished part [81/96]
Finished part [82/96]
Finished part [83/96]
Finished part [84/96]
Finished part [85/96]
Finished part [86/96]
Finished part [87/96]
Finished part [88/96]
Finished part [89/96]
Finished part [90/96]
Finished part [91/96]
Finished part [92/96]
Finished part [93/96]
Finished part [94/96]
Finished part [95/96]
Finished part [96/96]
-prfl dev_to_host_copy = 0us
-prfl fft = 67193us
-prfl second_function = 1789us
-prfl window_function = 646922us
-'zeta.csv' -> 'zeta-none.csv'
-Input file = /home/igankevich/workspace/arma-thesis/config/nit-propagating-gramcharlier
-Output grid size = (200,40,40)
-Output grid patch size = (1,1,1)
-Model = MA
-Verification scheme = manual
-MA model = order=(20,10,10),acf.shape=(20,10,10),algorithm=fixed_point_iteration
-Velocity potential solver name = N4arma8velocity21High_amplitude_solverIdEE
-Velocity potential solver = wnmax=from (0,0) to (0,0.25) npoints (2,2),depth=12,domain=from (10,-12) to (10,3) npoints (1,128)
-NIT transform = dist=gram_charlier,skewness=2.25,kurtosis=0.4,interpolation_nodes=100,interpolation_order=12,gram_charlier_order=20
-err = 0.901016
-err = 0.633282
-err = 0.627391
-err = 2.05244
-err = 2.73649
-err = 40.2987
-err = 46.5501
-err = 365.031
-err = 404.844
-err = 2334.7
-err = 2527.68
-err = 11727.1
-err = 12493.7
-err = 49080.1
-err = 51693.4
-err = 177912
-err = 185800
-err = 573975
-err = 595541
-err = 1.68124e+06
-trim = 3
-ACF variance = 5
-fixed_point_iteration:Iteration=0, var_wn=2.70831
-fixed_point_iteration:Iteration=1, var_wn=1.93791
-fixed_point_iteration:Iteration=2, var_wn=1.54801
-fixed_point_iteration:Iteration=3, var_wn=1.31202
-fixed_point_iteration:Iteration=4, var_wn=1.15328
-fixed_point_iteration:Iteration=5, var_wn=1.0386
-fixed_point_iteration:Iteration=6, var_wn=0.951442
-fixed_point_iteration:Iteration=7, var_wn=0.882674
-fixed_point_iteration:Iteration=8, var_wn=0.82688
-fixed_point_iteration:Iteration=9, var_wn=0.780623
-fixed_point_iteration:Iteration=10, var_wn=0.74161
-fixed_point_iteration:Iteration=11, var_wn=0.708244
-fixed_point_iteration:Iteration=12, var_wn=0.679374
-fixed_point_iteration:Iteration=13, var_wn=0.654145
-fixed_point_iteration:Iteration=14, var_wn=0.63191
-fixed_point_iteration:Iteration=15, var_wn=0.612168
-fixed_point_iteration:Iteration=16, var_wn=0.594523
-fixed_point_iteration:Iteration=17, var_wn=0.578663
-fixed_point_iteration:Iteration=18, var_wn=0.564333
-fixed_point_iteration:Iteration=19, var_wn=0.551325
-fixed_point_iteration:Iteration=20, var_wn=0.539469
-fixed_point_iteration:Iteration=21, var_wn=0.528623
-fixed_point_iteration:Iteration=22, var_wn=0.518666
-fixed_point_iteration:Iteration=23, var_wn=0.509497
-fixed_point_iteration:Iteration=24, var_wn=0.50103
-fixed_point_iteration:Iteration=25, var_wn=0.493191
-fixed_point_iteration:Iteration=26, var_wn=0.485915
-fixed_point_iteration:Iteration=27, var_wn=0.479148
-fixed_point_iteration:Iteration=28, var_wn=0.472841
-fixed_point_iteration:Iteration=29, var_wn=0.466951
-fixed_point_iteration:Iteration=30, var_wn=0.461442
-fixed_point_iteration:Iteration=31, var_wn=0.456279
-fixed_point_iteration:Iteration=32, var_wn=0.451435
-fixed_point_iteration:Iteration=33, var_wn=0.446882
-fixed_point_iteration:Iteration=34, var_wn=0.442597
-fixed_point_iteration:Iteration=35, var_wn=0.43856
-fixed_point_iteration:Iteration=36, var_wn=0.434752
-fixed_point_iteration:Iteration=37, var_wn=0.431155
-fixed_point_iteration:Iteration=38, var_wn=0.427755
-fixed_point_iteration:Iteration=39, var_wn=0.424537
-fixed_point_iteration:Iteration=40, var_wn=0.42149
-fixed_point_iteration:Iteration=41, var_wn=0.4186
-fixed_point_iteration:Iteration=42, var_wn=0.415859
-fixed_point_iteration:Iteration=43, var_wn=0.413256
-fixed_point_iteration:Iteration=44, var_wn=0.410782
-fixed_point_iteration:Iteration=45, var_wn=0.408429
-fixed_point_iteration:Iteration=46, var_wn=0.406191
-fixed_point_iteration:Iteration=47, var_wn=0.404059
-fixed_point_iteration:Iteration=48, var_wn=0.402028
-fixed_point_iteration:Iteration=49, var_wn=0.400092
-fixed_point_iteration:Iteration=50, var_wn=0.398246
-fixed_point_iteration:Iteration=51, var_wn=0.396483
-fixed_point_iteration:Iteration=52, var_wn=0.3948
-fixed_point_iteration:Iteration=53, var_wn=0.393193
-fixed_point_iteration:Iteration=54, var_wn=0.391656
-fixed_point_iteration:Iteration=55, var_wn=0.390187
-fixed_point_iteration:Iteration=56, var_wn=0.388782
-fixed_point_iteration:Iteration=57, var_wn=0.387438
-fixed_point_iteration:Iteration=58, var_wn=0.386151
-fixed_point_iteration:Iteration=59, var_wn=0.384918
-fixed_point_iteration:Iteration=60, var_wn=0.383738
-fixed_point_iteration:Iteration=61, var_wn=0.382606
-fixed_point_iteration:Iteration=62, var_wn=0.381522
-fixed_point_iteration:Iteration=63, var_wn=0.380482
-fixed_point_iteration:Iteration=64, var_wn=0.379485
-fixed_point_iteration:Iteration=65, var_wn=0.378528
-fixed_point_iteration:Iteration=66, var_wn=0.37761
-fixed_point_iteration:Iteration=67, var_wn=0.376728
-fixed_point_iteration:Iteration=68, var_wn=0.375882
-fixed_point_iteration:Iteration=69, var_wn=0.37507
-fixed_point_iteration:Iteration=70, var_wn=0.374289
-fixed_point_iteration:Iteration=71, var_wn=0.373539
-fixed_point_iteration:Iteration=72, var_wn=0.372818
-fixed_point_iteration:Iteration=73, var_wn=0.372126
-fixed_point_iteration:Iteration=74, var_wn=0.37146
-fixed_point_iteration:Iteration=75, var_wn=0.370819
-fixed_point_iteration:Iteration=76, var_wn=0.370204
-fixed_point_iteration:Iteration=77, var_wn=0.369611
-fixed_point_iteration:Iteration=78, var_wn=0.369042
-fixed_point_iteration:Iteration=79, var_wn=0.368493
-fixed_point_iteration:Iteration=80, var_wn=0.367966
-fixed_point_iteration:Iteration=81, var_wn=0.367458
-fixed_point_iteration:Iteration=82, var_wn=0.366969
-fixed_point_iteration:Iteration=83, var_wn=0.366499
-fixed_point_iteration:Iteration=84, var_wn=0.366046
-fixed_point_iteration:Iteration=85, var_wn=0.365609
-fixed_point_iteration:Iteration=86, var_wn=0.365189
-fixed_point_iteration:Iteration=87, var_wn=0.364785
-fixed_point_iteration:Iteration=88, var_wn=0.364395
-fixed_point_iteration:Iteration=89, var_wn=0.364019
-fixed_point_iteration:Iteration=90, var_wn=0.363657
-fixed_point_iteration:Iteration=91, var_wn=0.363309
-fixed_point_iteration:Iteration=92, var_wn=0.362973
-fixed_point_iteration:Iteration=93, var_wn=0.362649
-fixed_point_iteration:Iteration=94, var_wn=0.362337
-fixed_point_iteration:Iteration=95, var_wn=0.362036
-fixed_point_iteration:Iteration=96, var_wn=0.361746
-fixed_point_iteration:Iteration=97, var_wn=0.361466
-fixed_point_iteration:Iteration=98, var_wn=0.361196
-fixed_point_iteration:Iteration=99, var_wn=0.360936
-fixed_point_iteration:Iteration=100, var_wn=0.360686
-fixed_point_iteration:Iteration=101, var_wn=0.360444
-fixed_point_iteration:Iteration=102, var_wn=0.360211
-fixed_point_iteration:Iteration=103, var_wn=0.359986
-fixed_point_iteration:Iteration=104, var_wn=0.359769
-fixed_point_iteration:Iteration=105, var_wn=0.35956
-fixed_point_iteration:Iteration=106, var_wn=0.359358
-fixed_point_iteration:Iteration=107, var_wn=0.359163
-fixed_point_iteration:Iteration=108, var_wn=0.358975
-fixed_point_iteration:Iteration=109, var_wn=0.358794
-fixed_point_iteration:Iteration=110, var_wn=0.358619
-fixed_point_iteration:Iteration=111, var_wn=0.35845
-fixed_point_iteration:Iteration=112, var_wn=0.358287
-fixed_point_iteration:Iteration=113, var_wn=0.35813
-fixed_point_iteration:Iteration=114, var_wn=0.357979
-fixed_point_iteration:Iteration=115, var_wn=0.357832
-fixed_point_iteration:Iteration=116, var_wn=0.357691
-fixed_point_iteration:Iteration=117, var_wn=0.357555
-fixed_point_iteration:Iteration=118, var_wn=0.357423
-fixed_point_iteration:Iteration=119, var_wn=0.357296
-fixed_point_iteration:Iteration=120, var_wn=0.357173
-fixed_point_iteration:Iteration=121, var_wn=0.357055
-fixed_point_iteration:Iteration=122, var_wn=0.356941
-fixed_point_iteration:Iteration=123, var_wn=0.35683
-fixed_point_iteration:Iteration=124, var_wn=0.356724
-fixed_point_iteration:Iteration=125, var_wn=0.356621
-fixed_point_iteration:Iteration=126, var_wn=0.356522
-fixed_point_iteration:Iteration=127, var_wn=0.356426
-fixed_point_iteration:Iteration=128, var_wn=0.356334
-fixed_point_iteration:Iteration=129, var_wn=0.356244
-fixed_point_iteration:Iteration=130, var_wn=0.356158
-fixed_point_iteration:Iteration=131, var_wn=0.356075
-fixed_point_iteration:Iteration=132, var_wn=0.355994
-fixed_point_iteration:Iteration=133, var_wn=0.355917
-fixed_point_iteration:Iteration=134, var_wn=0.355842
-fixed_point_iteration:Iteration=135, var_wn=0.355769
-fixed_point_iteration:Iteration=136, var_wn=0.355699
-fixed_point_iteration:Iteration=137, var_wn=0.355632
-fixed_point_iteration:Iteration=138, var_wn=0.355566
-fixed_point_iteration:Iteration=139, var_wn=0.355504
-fixed_point_iteration:Iteration=140, var_wn=0.355443
-fixed_point_iteration:Iteration=141, var_wn=0.355384
-fixed_point_iteration:Iteration=142, var_wn=0.355327
-fixed_point_iteration:Iteration=143, var_wn=0.355272
-fixed_point_iteration:Iteration=144, var_wn=0.35522
-fixed_point_iteration:Iteration=145, var_wn=0.355168
-fixed_point_iteration:Iteration=146, var_wn=0.355119
-fixed_point_iteration:Iteration=147, var_wn=0.355071
-fixed_point_iteration:Iteration=148, var_wn=0.355025
-fixed_point_iteration:Iteration=149, var_wn=0.354981
-fixed_point_iteration:Iteration=150, var_wn=0.354938
-fixed_point_iteration:Iteration=151, var_wn=0.354896
-fixed_point_iteration:Iteration=152, var_wn=0.354856
-fixed_point_iteration:Iteration=153, var_wn=0.354818
-fixed_point_iteration:Iteration=154, var_wn=0.35478
-fixed_point_iteration:Iteration=155, var_wn=0.354744
-fixed_point_iteration:Iteration=156, var_wn=0.354709
-fixed_point_iteration:Iteration=157, var_wn=0.354676
-fixed_point_iteration:Iteration=158, var_wn=0.354643
-fixed_point_iteration:Iteration=159, var_wn=0.354612
-fixed_point_iteration:Iteration=160, var_wn=0.354581
-fixed_point_iteration:Iteration=161, var_wn=0.354552
-fixed_point_iteration:Iteration=162, var_wn=0.354523
-fixed_point_iteration:Iteration=163, var_wn=0.354496
-fixed_point_iteration:Iteration=164, var_wn=0.35447
-fixed_point_iteration:Iteration=165, var_wn=0.354444
-fixed_point_iteration:Iteration=166, var_wn=0.354419
-fixed_point_iteration:Iteration=167, var_wn=0.354396
-fixed_point_iteration:Iteration=168, var_wn=0.354373
-fixed_point_iteration:Iteration=169, var_wn=0.35435
-fixed_point_iteration:Iteration=170, var_wn=0.354329
-fixed_point_iteration:Iteration=171, var_wn=0.354308
-fixed_point_iteration:Iteration=172, var_wn=0.354288
-fixed_point_iteration:Iteration=173, var_wn=0.354269
-fixed_point_iteration:Iteration=174, var_wn=0.35425
-fixed_point_iteration:Iteration=175, var_wn=0.354232
-fixed_point_iteration:Iteration=176, var_wn=0.354214
-fixed_point_iteration:Iteration=177, var_wn=0.354197
-fixed_point_iteration:Iteration=178, var_wn=0.354181
-fixed_point_iteration:Iteration=179, var_wn=0.354165
-fixed_point_iteration:Iteration=180, var_wn=0.35415
-fixed_point_iteration:Iteration=181, var_wn=0.354135
-fixed_point_iteration:Iteration=182, var_wn=0.354121
-fixed_point_iteration:Iteration=183, var_wn=0.354107
-fixed_point_iteration:Iteration=184, var_wn=0.354094
-fixed_point_iteration:Iteration=185, var_wn=0.354081
-fixed_point_iteration:Iteration=186, var_wn=0.354069
-fixed_point_iteration:Iteration=187, var_wn=0.354057
-fixed_point_iteration:Iteration=188, var_wn=0.354046
-fixed_point_iteration:Iteration=189, var_wn=0.354034
-fixed_point_iteration:Iteration=190, var_wn=0.354024
-fixed_point_iteration:Iteration=191, var_wn=0.354013
-fixed_point_iteration:Iteration=192, var_wn=0.354003
-fixed_point_iteration:Iteration=193, var_wn=0.353993
-WN variance = 0.353993
+ACF variance = 1
+fixed_point_iteration:Iteration=0, var_wn=0.541662
+fixed_point_iteration:Iteration=1, var_wn=0.387581
+fixed_point_iteration:Iteration=2, var_wn=0.309602
+fixed_point_iteration:Iteration=3, var_wn=0.262404
+fixed_point_iteration:Iteration=4, var_wn=0.230656
+fixed_point_iteration:Iteration=5, var_wn=0.207721
+fixed_point_iteration:Iteration=6, var_wn=0.190288
+fixed_point_iteration:Iteration=7, var_wn=0.176535
+fixed_point_iteration:Iteration=8, var_wn=0.165376
+fixed_point_iteration:Iteration=9, var_wn=0.156125
+fixed_point_iteration:Iteration=10, var_wn=0.148322
+fixed_point_iteration:Iteration=11, var_wn=0.141649
+fixed_point_iteration:Iteration=12, var_wn=0.135875
+fixed_point_iteration:Iteration=13, var_wn=0.130829
+fixed_point_iteration:Iteration=14, var_wn=0.126382
+fixed_point_iteration:Iteration=15, var_wn=0.122434
+fixed_point_iteration:Iteration=16, var_wn=0.118905
+fixed_point_iteration:Iteration=17, var_wn=0.115733
+fixed_point_iteration:Iteration=18, var_wn=0.112867
+fixed_point_iteration:Iteration=19, var_wn=0.110265
+fixed_point_iteration:Iteration=20, var_wn=0.107894
+fixed_point_iteration:Iteration=21, var_wn=0.105725
+fixed_point_iteration:Iteration=22, var_wn=0.103733
+fixed_point_iteration:Iteration=23, var_wn=0.101899
+fixed_point_iteration:Iteration=24, var_wn=0.100206
+fixed_point_iteration:Iteration=25, var_wn=0.0986382
+fixed_point_iteration:Iteration=26, var_wn=0.0971831
+fixed_point_iteration:Iteration=27, var_wn=0.0958297
+fixed_point_iteration:Iteration=28, var_wn=0.0945682
+fixed_point_iteration:Iteration=29, var_wn=0.0933903
+fixed_point_iteration:Iteration=30, var_wn=0.0922883
+fixed_point_iteration:Iteration=31, var_wn=0.0912558
+fixed_point_iteration:Iteration=32, var_wn=0.0902869
+fixed_point_iteration:Iteration=33, var_wn=0.0893763
+fixed_point_iteration:Iteration=34, var_wn=0.0885194
+fixed_point_iteration:Iteration=35, var_wn=0.087712
+fixed_point_iteration:Iteration=36, var_wn=0.0869503
+fixed_point_iteration:Iteration=37, var_wn=0.086231
+fixed_point_iteration:Iteration=38, var_wn=0.085551
+fixed_point_iteration:Iteration=39, var_wn=0.0849075
+fixed_point_iteration:Iteration=40, var_wn=0.0842979
+fixed_point_iteration:Iteration=41, var_wn=0.0837201
+fixed_point_iteration:Iteration=42, var_wn=0.0831718
+fixed_point_iteration:Iteration=43, var_wn=0.0826511
+fixed_point_iteration:Iteration=44, var_wn=0.0821564
+fixed_point_iteration:Iteration=45, var_wn=0.0816859
+fixed_point_iteration:Iteration=46, var_wn=0.0812382
+fixed_point_iteration:Iteration=47, var_wn=0.0808119
+fixed_point_iteration:Iteration=48, var_wn=0.0804057
+fixed_point_iteration:Iteration=49, var_wn=0.0800185
+fixed_point_iteration:Iteration=50, var_wn=0.0796491
+fixed_point_iteration:Iteration=51, var_wn=0.0792966
+fixed_point_iteration:Iteration=52, var_wn=0.07896
+fixed_point_iteration:Iteration=53, var_wn=0.0786385
+fixed_point_iteration:Iteration=54, var_wn=0.0783313
+fixed_point_iteration:Iteration=55, var_wn=0.0780375
+fixed_point_iteration:Iteration=56, var_wn=0.0777565
+fixed_point_iteration:Iteration=57, var_wn=0.0774875
+fixed_point_iteration:Iteration=58, var_wn=0.0772301
+fixed_point_iteration:Iteration=59, var_wn=0.0769836
+fixed_point_iteration:Iteration=60, var_wn=0.0767475
+fixed_point_iteration:Iteration=61, var_wn=0.0765213
+fixed_point_iteration:Iteration=62, var_wn=0.0763044
+fixed_point_iteration:Iteration=63, var_wn=0.0760964
+fixed_point_iteration:Iteration=64, var_wn=0.0758969
+fixed_point_iteration:Iteration=65, var_wn=0.0757056
+fixed_point_iteration:Iteration=66, var_wn=0.075522
+fixed_point_iteration:Iteration=67, var_wn=0.0753457
+fixed_point_iteration:Iteration=68, var_wn=0.0751764
+fixed_point_iteration:Iteration=69, var_wn=0.0750139
+fixed_point_iteration:Iteration=70, var_wn=0.0748578
+fixed_point_iteration:Iteration=71, var_wn=0.0747078
+fixed_point_iteration:Iteration=72, var_wn=0.0745637
+fixed_point_iteration:Iteration=73, var_wn=0.0744251
+fixed_point_iteration:Iteration=74, var_wn=0.0742919
+fixed_point_iteration:Iteration=75, var_wn=0.0741639
+fixed_point_iteration:Iteration=76, var_wn=0.0740407
+fixed_point_iteration:Iteration=77, var_wn=0.0739223
+fixed_point_iteration:Iteration=78, var_wn=0.0738083
+fixed_point_iteration:Iteration=79, var_wn=0.0736987
+fixed_point_iteration:Iteration=80, var_wn=0.0735932
+fixed_point_iteration:Iteration=81, var_wn=0.0734916
+fixed_point_iteration:Iteration=82, var_wn=0.0733939
+fixed_point_iteration:Iteration=83, var_wn=0.0732998
+fixed_point_iteration:Iteration=84, var_wn=0.0732091
+fixed_point_iteration:Iteration=85, var_wn=0.0731219
+fixed_point_iteration:Iteration=86, var_wn=0.0730379
+fixed_point_iteration:Iteration=87, var_wn=0.0729569
+fixed_point_iteration:Iteration=88, var_wn=0.072879
+fixed_point_iteration:Iteration=89, var_wn=0.0728038
+fixed_point_iteration:Iteration=90, var_wn=0.0727315
+fixed_point_iteration:Iteration=91, var_wn=0.0726617
+fixed_point_iteration:Iteration=92, var_wn=0.0725945
+fixed_point_iteration:Iteration=93, var_wn=0.0725298
+fixed_point_iteration:Iteration=94, var_wn=0.0724673
+fixed_point_iteration:Iteration=95, var_wn=0.0724072
+fixed_point_iteration:Iteration=96, var_wn=0.0723491
+fixed_point_iteration:Iteration=97, var_wn=0.0722932
+fixed_point_iteration:Iteration=98, var_wn=0.0722393
+fixed_point_iteration:Iteration=99, var_wn=0.0721873
+fixed_point_iteration:Iteration=100, var_wn=0.0721372
+fixed_point_iteration:Iteration=101, var_wn=0.0720888
+fixed_point_iteration:Iteration=102, var_wn=0.0720422
+fixed_point_iteration:Iteration=103, var_wn=0.0719972
+fixed_point_iteration:Iteration=104, var_wn=0.0719538
+fixed_point_iteration:Iteration=105, var_wn=0.0719119
+fixed_point_iteration:Iteration=106, var_wn=0.0718716
+fixed_point_iteration:Iteration=107, var_wn=0.0718326
+fixed_point_iteration:Iteration=108, var_wn=0.0717951
+fixed_point_iteration:Iteration=109, var_wn=0.0717588
+fixed_point_iteration:Iteration=110, var_wn=0.0717238
+fixed_point_iteration:Iteration=111, var_wn=0.0716901
+fixed_point_iteration:Iteration=112, var_wn=0.0716575
+fixed_point_iteration:Iteration=113, var_wn=0.0716261
+fixed_point_iteration:Iteration=114, var_wn=0.0715957
+fixed_point_iteration:Iteration=115, var_wn=0.0715664
+fixed_point_iteration:Iteration=116, var_wn=0.0715382
+fixed_point_iteration:Iteration=117, var_wn=0.0715109
+fixed_point_iteration:Iteration=118, var_wn=0.0714846
+fixed_point_iteration:Iteration=119, var_wn=0.0714592
+fixed_point_iteration:Iteration=120, var_wn=0.0714347
+fixed_point_iteration:Iteration=121, var_wn=0.071411
+fixed_point_iteration:Iteration=122, var_wn=0.0713881
+fixed_point_iteration:Iteration=123, var_wn=0.0713661
+fixed_point_iteration:Iteration=124, var_wn=0.0713448
+fixed_point_iteration:Iteration=125, var_wn=0.0713242
+fixed_point_iteration:Iteration=126, var_wn=0.0713044
+fixed_point_iteration:Iteration=127, var_wn=0.0712852
+fixed_point_iteration:Iteration=128, var_wn=0.0712667
+fixed_point_iteration:Iteration=129, var_wn=0.0712488
+fixed_point_iteration:Iteration=130, var_wn=0.0712316
+fixed_point_iteration:Iteration=131, var_wn=0.0712149
+fixed_point_iteration:Iteration=132, var_wn=0.0711988
+fixed_point_iteration:Iteration=133, var_wn=0.0711833
+fixed_point_iteration:Iteration=134, var_wn=0.0711683
+fixed_point_iteration:Iteration=135, var_wn=0.0711538
+fixed_point_iteration:Iteration=136, var_wn=0.0711398
+fixed_point_iteration:Iteration=137, var_wn=0.0711263
+fixed_point_iteration:Iteration=138, var_wn=0.0711133
+fixed_point_iteration:Iteration=139, var_wn=0.0711007
+fixed_point_iteration:Iteration=140, var_wn=0.0710885
+fixed_point_iteration:Iteration=141, var_wn=0.0710768
+fixed_point_iteration:Iteration=142, var_wn=0.0710654
+fixed_point_iteration:Iteration=143, var_wn=0.0710545
+fixed_point_iteration:Iteration=144, var_wn=0.0710439
+fixed_point_iteration:Iteration=145, var_wn=0.0710337
+fixed_point_iteration:Iteration=146, var_wn=0.0710238
+WN variance = 0.0710238
Partition size = (34,13,13)
Finished part [1/96]
Finished part [2/96]
Finished part [3/96]
Finished part [4/96]
Finished part [5/96]
Finished part [6/96]
Finished part [7/96]
Finished part [8/96]
Finished part [9/96]
Finished part [10/96]
Finished part [11/96]
Finished part [12/96]
Finished part [13/96]
Finished part [14/96]
Finished part [15/96]
Finished part [16/96]
Finished part [17/96]
Finished part [18/96]
Finished part [19/96]
Finished part [20/96]
Finished part [21/96]
Finished part [22/96]
Finished part [23/96]
Finished part [24/96]
Finished part [25/96]
Finished part [26/96]
Finished part [27/96]
Finished part [28/96]
Finished part [29/96]
Finished part [30/96]
Finished part [31/96]
Finished part [32/96]
Finished part [33/96]
Finished part [34/96]
Finished part [35/96]
Finished part [36/96]
Finished part [37/96]
Finished part [38/96]
Finished part [39/96]
Finished part [40/96]
Finished part [41/96]
Finished part [42/96]
Finished part [43/96]
Finished part [44/96]
Finished part [45/96]
Finished part [46/96]
Finished part [47/96]
Finished part [48/96]
Finished part [49/96]
Finished part [50/96]
Finished part [51/96]
Finished part [52/96]
Finished part [53/96]
Finished part [54/96]
Finished part [55/96]
Finished part [56/96]
Finished part [57/96]
Finished part [58/96]
Finished part [59/96]
Finished part [60/96]
Finished part [61/96]
Finished part [62/96]
Finished part [63/96]
Finished part [64/96]
Finished part [65/96]
Finished part [66/96]
Finished part [67/96]
Finished part [68/96]
Finished part [69/96]
Finished part [70/96]
Finished part [71/96]
Finished part [72/96]
Finished part [73/96]
Finished part [74/96]
Finished part [75/96]
Finished part [76/96]
Finished part [77/96]
Finished part [78/96]
Finished part [79/96]
Finished part [80/96]
Finished part [81/96]
Finished part [82/96]
Finished part [83/96]
Finished part [84/96]
Finished part [85/96]
Finished part [86/96]
Finished part [87/96]
Finished part [88/96]
Finished part [89/96]
Finished part [90/96]
Finished part [91/96]
Finished part [92/96]
Finished part [93/96]
Finished part [94/96]
Finished part [95/96]
Finished part [96/96]
prfl dev_to_host_copy = 0us
-prfl fft = 69013us
-prfl second_function = 1773us
-prfl window_function = 680350us
-'zeta.csv' -> 'zeta-gramcharlier.csv'
-Input file = /home/igankevich/workspace/arma-thesis/config/nit-propagating-skewnormal
+prfl fft = 67598us
+prfl second_function = 1780us
+prfl window_function = 673751us
+'zeta.csv' -> 'zeta-none.csv'
+Input file = /home/igankevich/workspace/arma-thesis/config/nit-propagating-gramcharlier
Output grid size = (200,40,40)
Output grid patch size = (1,1,1)
Model = MA
@@ -1033,230 +753,369 @@ Verification scheme = manual
MA model = order=(20,10,10),acf.shape=(20,10,10),algorithm=fixed_point_iteration
Velocity potential solver name = N4arma8velocity21High_amplitude_solverIdEE
Velocity potential solver = wnmax=from (0,0) to (0,0.25) npoints (2,2),depth=12,domain=from (10,-12) to (10,3) npoints (1,128)
-NIT transform = dist=skew_normal,mean=0,stdev=1,alpha=1,interpolation_nodes=100,interpolation_order=12,gram_charlier_order=20
-err = 0.998755
-err = 0.983748
-err = 0.977411
-err = 1.59755
-err = 2.27643
-err = 39.8798
-err = 46.1337
-err = 364.604
-err = 404.416
-err = 2334.27
-err = 2527.26
-err = 11726.6
-err = 12493.2
-err = 49079.7
-err = 51693
+NIT transform = dist=gram_charlier,skewness=2.25,kurtosis=0.4,interpolation_nodes=100,interpolation_order=12,gram_charlier_order=20
+err = 0.997239
+err = 0.195639
+err = 0.204665
+err = 3.3227
+err = 4.20064
+err = 41.2299
+err = 47.0536
+err = 366.08
+err = 406.6
+err = 2335.93
+err = 2527.49
+err = 11726.2
+err = 12492.8
+err = 49079.2
+err = 51692.6
err = 177911
err = 185800
err = 573975
err = 595540
err = 1.68124e+06
+trim = 2
+ACF variance = 1
+fixed_point_iteration:Iteration=0, var_wn=0.541662
+fixed_point_iteration:Iteration=1, var_wn=0.387581
+fixed_point_iteration:Iteration=2, var_wn=0.309602
+fixed_point_iteration:Iteration=3, var_wn=0.262404
+fixed_point_iteration:Iteration=4, var_wn=0.230656
+fixed_point_iteration:Iteration=5, var_wn=0.207721
+fixed_point_iteration:Iteration=6, var_wn=0.190288
+fixed_point_iteration:Iteration=7, var_wn=0.176535
+fixed_point_iteration:Iteration=8, var_wn=0.165376
+fixed_point_iteration:Iteration=9, var_wn=0.156125
+fixed_point_iteration:Iteration=10, var_wn=0.148322
+fixed_point_iteration:Iteration=11, var_wn=0.141649
+fixed_point_iteration:Iteration=12, var_wn=0.135875
+fixed_point_iteration:Iteration=13, var_wn=0.130829
+fixed_point_iteration:Iteration=14, var_wn=0.126382
+fixed_point_iteration:Iteration=15, var_wn=0.122434
+fixed_point_iteration:Iteration=16, var_wn=0.118905
+fixed_point_iteration:Iteration=17, var_wn=0.115733
+fixed_point_iteration:Iteration=18, var_wn=0.112867
+fixed_point_iteration:Iteration=19, var_wn=0.110265
+fixed_point_iteration:Iteration=20, var_wn=0.107894
+fixed_point_iteration:Iteration=21, var_wn=0.105725
+fixed_point_iteration:Iteration=22, var_wn=0.103733
+fixed_point_iteration:Iteration=23, var_wn=0.101899
+fixed_point_iteration:Iteration=24, var_wn=0.100206
+fixed_point_iteration:Iteration=25, var_wn=0.0986382
+fixed_point_iteration:Iteration=26, var_wn=0.0971831
+fixed_point_iteration:Iteration=27, var_wn=0.0958297
+fixed_point_iteration:Iteration=28, var_wn=0.0945682
+fixed_point_iteration:Iteration=29, var_wn=0.0933903
+fixed_point_iteration:Iteration=30, var_wn=0.0922883
+fixed_point_iteration:Iteration=31, var_wn=0.0912558
+fixed_point_iteration:Iteration=32, var_wn=0.0902869
+fixed_point_iteration:Iteration=33, var_wn=0.0893763
+fixed_point_iteration:Iteration=34, var_wn=0.0885194
+fixed_point_iteration:Iteration=35, var_wn=0.087712
+fixed_point_iteration:Iteration=36, var_wn=0.0869503
+fixed_point_iteration:Iteration=37, var_wn=0.086231
+fixed_point_iteration:Iteration=38, var_wn=0.085551
+fixed_point_iteration:Iteration=39, var_wn=0.0849075
+fixed_point_iteration:Iteration=40, var_wn=0.0842979
+fixed_point_iteration:Iteration=41, var_wn=0.0837201
+fixed_point_iteration:Iteration=42, var_wn=0.0831718
+fixed_point_iteration:Iteration=43, var_wn=0.0826511
+fixed_point_iteration:Iteration=44, var_wn=0.0821564
+fixed_point_iteration:Iteration=45, var_wn=0.0816859
+fixed_point_iteration:Iteration=46, var_wn=0.0812382
+fixed_point_iteration:Iteration=47, var_wn=0.0808119
+fixed_point_iteration:Iteration=48, var_wn=0.0804057
+fixed_point_iteration:Iteration=49, var_wn=0.0800185
+fixed_point_iteration:Iteration=50, var_wn=0.0796491
+fixed_point_iteration:Iteration=51, var_wn=0.0792966
+fixed_point_iteration:Iteration=52, var_wn=0.07896
+fixed_point_iteration:Iteration=53, var_wn=0.0786385
+fixed_point_iteration:Iteration=54, var_wn=0.0783313
+fixed_point_iteration:Iteration=55, var_wn=0.0780375
+fixed_point_iteration:Iteration=56, var_wn=0.0777565
+fixed_point_iteration:Iteration=57, var_wn=0.0774875
+fixed_point_iteration:Iteration=58, var_wn=0.0772301
+fixed_point_iteration:Iteration=59, var_wn=0.0769836
+fixed_point_iteration:Iteration=60, var_wn=0.0767475
+fixed_point_iteration:Iteration=61, var_wn=0.0765213
+fixed_point_iteration:Iteration=62, var_wn=0.0763044
+fixed_point_iteration:Iteration=63, var_wn=0.0760964
+fixed_point_iteration:Iteration=64, var_wn=0.0758969
+fixed_point_iteration:Iteration=65, var_wn=0.0757056
+fixed_point_iteration:Iteration=66, var_wn=0.075522
+fixed_point_iteration:Iteration=67, var_wn=0.0753457
+fixed_point_iteration:Iteration=68, var_wn=0.0751764
+fixed_point_iteration:Iteration=69, var_wn=0.0750139
+fixed_point_iteration:Iteration=70, var_wn=0.0748578
+fixed_point_iteration:Iteration=71, var_wn=0.0747078
+fixed_point_iteration:Iteration=72, var_wn=0.0745637
+fixed_point_iteration:Iteration=73, var_wn=0.0744251
+fixed_point_iteration:Iteration=74, var_wn=0.0742919
+fixed_point_iteration:Iteration=75, var_wn=0.0741639
+fixed_point_iteration:Iteration=76, var_wn=0.0740407
+fixed_point_iteration:Iteration=77, var_wn=0.0739223
+fixed_point_iteration:Iteration=78, var_wn=0.0738083
+fixed_point_iteration:Iteration=79, var_wn=0.0736987
+fixed_point_iteration:Iteration=80, var_wn=0.0735932
+fixed_point_iteration:Iteration=81, var_wn=0.0734916
+fixed_point_iteration:Iteration=82, var_wn=0.0733939
+fixed_point_iteration:Iteration=83, var_wn=0.0732998
+fixed_point_iteration:Iteration=84, var_wn=0.0732091
+fixed_point_iteration:Iteration=85, var_wn=0.0731219
+fixed_point_iteration:Iteration=86, var_wn=0.0730379
+fixed_point_iteration:Iteration=87, var_wn=0.0729569
+fixed_point_iteration:Iteration=88, var_wn=0.072879
+fixed_point_iteration:Iteration=89, var_wn=0.0728038
+fixed_point_iteration:Iteration=90, var_wn=0.0727315
+fixed_point_iteration:Iteration=91, var_wn=0.0726617
+fixed_point_iteration:Iteration=92, var_wn=0.0725945
+fixed_point_iteration:Iteration=93, var_wn=0.0725298
+fixed_point_iteration:Iteration=94, var_wn=0.0724673
+fixed_point_iteration:Iteration=95, var_wn=0.0724072
+fixed_point_iteration:Iteration=96, var_wn=0.0723491
+fixed_point_iteration:Iteration=97, var_wn=0.0722932
+fixed_point_iteration:Iteration=98, var_wn=0.0722393
+fixed_point_iteration:Iteration=99, var_wn=0.0721873
+fixed_point_iteration:Iteration=100, var_wn=0.0721372
+fixed_point_iteration:Iteration=101, var_wn=0.0720888
+fixed_point_iteration:Iteration=102, var_wn=0.0720422
+fixed_point_iteration:Iteration=103, var_wn=0.0719972
+fixed_point_iteration:Iteration=104, var_wn=0.0719538
+fixed_point_iteration:Iteration=105, var_wn=0.0719119
+fixed_point_iteration:Iteration=106, var_wn=0.0718716
+fixed_point_iteration:Iteration=107, var_wn=0.0718326
+fixed_point_iteration:Iteration=108, var_wn=0.0717951
+fixed_point_iteration:Iteration=109, var_wn=0.0717588
+fixed_point_iteration:Iteration=110, var_wn=0.0717238
+fixed_point_iteration:Iteration=111, var_wn=0.0716901
+fixed_point_iteration:Iteration=112, var_wn=0.0716575
+fixed_point_iteration:Iteration=113, var_wn=0.0716261
+fixed_point_iteration:Iteration=114, var_wn=0.0715957
+fixed_point_iteration:Iteration=115, var_wn=0.0715664
+fixed_point_iteration:Iteration=116, var_wn=0.0715382
+fixed_point_iteration:Iteration=117, var_wn=0.0715109
+fixed_point_iteration:Iteration=118, var_wn=0.0714846
+fixed_point_iteration:Iteration=119, var_wn=0.0714592
+fixed_point_iteration:Iteration=120, var_wn=0.0714347
+fixed_point_iteration:Iteration=121, var_wn=0.071411
+fixed_point_iteration:Iteration=122, var_wn=0.0713881
+fixed_point_iteration:Iteration=123, var_wn=0.0713661
+fixed_point_iteration:Iteration=124, var_wn=0.0713448
+fixed_point_iteration:Iteration=125, var_wn=0.0713242
+fixed_point_iteration:Iteration=126, var_wn=0.0713044
+fixed_point_iteration:Iteration=127, var_wn=0.0712852
+fixed_point_iteration:Iteration=128, var_wn=0.0712667
+fixed_point_iteration:Iteration=129, var_wn=0.0712488
+fixed_point_iteration:Iteration=130, var_wn=0.0712316
+fixed_point_iteration:Iteration=131, var_wn=0.0712149
+fixed_point_iteration:Iteration=132, var_wn=0.0711988
+fixed_point_iteration:Iteration=133, var_wn=0.0711833
+fixed_point_iteration:Iteration=134, var_wn=0.0711683
+fixed_point_iteration:Iteration=135, var_wn=0.0711538
+fixed_point_iteration:Iteration=136, var_wn=0.0711398
+fixed_point_iteration:Iteration=137, var_wn=0.0711263
+fixed_point_iteration:Iteration=138, var_wn=0.0711133
+fixed_point_iteration:Iteration=139, var_wn=0.0711007
+fixed_point_iteration:Iteration=140, var_wn=0.0710885
+fixed_point_iteration:Iteration=141, var_wn=0.0710768
+fixed_point_iteration:Iteration=142, var_wn=0.0710654
+fixed_point_iteration:Iteration=143, var_wn=0.0710545
+fixed_point_iteration:Iteration=144, var_wn=0.0710439
+fixed_point_iteration:Iteration=145, var_wn=0.0710337
+fixed_point_iteration:Iteration=146, var_wn=0.0710238
+WN variance = 0.0710238
+Partition size = (34,13,13)
+
Finished part [1/96]
Finished part [2/96]
Finished part [3/96]
Finished part [4/96]
Finished part [5/96]
Finished part [6/96]
Finished part [7/96]
Finished part [8/96]
Finished part [9/96]
Finished part [10/96]
Finished part [11/96]
Finished part [12/96]
Finished part [13/96]
Finished part [14/96]
Finished part [15/96]
Finished part [16/96]
Finished part [17/96]
Finished part [18/96]
Finished part [19/96]
Finished part [20/96]
Finished part [21/96]
Finished part [22/96]
Finished part [23/96]
Finished part [24/96]
Finished part [25/96]
Finished part [26/96]
Finished part [27/96]
Finished part [28/96]
Finished part [29/96]
Finished part [30/96]
Finished part [31/96]
Finished part [32/96]
Finished part [33/96]
Finished part [34/96]
Finished part [35/96]
Finished part [36/96]
Finished part [37/96]
Finished part [38/96]
Finished part [39/96]
Finished part [40/96]
Finished part [41/96]
Finished part [42/96]
Finished part [43/96]
Finished part [44/96]
Finished part [45/96]
Finished part [46/96]
Finished part [47/96]
Finished part [48/96]
Finished part [49/96]
Finished part [50/96]
Finished part [51/96]
Finished part [52/96]
Finished part [53/96]
Finished part [54/96]
Finished part [55/96]
Finished part [56/96]
Finished part [57/96]
Finished part [58/96]
Finished part [59/96]
Finished part [60/96]
Finished part [61/96]
Finished part [62/96]
Finished part [63/96]
Finished part [64/96]
Finished part [65/96]
Finished part [66/96]
Finished part [67/96]
Finished part [68/96]
Finished part [69/96]
Finished part [70/96]
Finished part [71/96]
Finished part [72/96]
Finished part [73/96]
Finished part [74/96]
Finished part [75/96]
Finished part [76/96]
Finished part [77/96]
Finished part [78/96]
Finished part [79/96]
Finished part [80/96]
Finished part [81/96]
Finished part [82/96]
Finished part [83/96]
Finished part [84/96]
Finished part [85/96]
Finished part [86/96]
Finished part [87/96]
Finished part [88/96]
Finished part [89/96]
Finished part [90/96]
Finished part [91/96]
Finished part [92/96]
Finished part [93/96]
Finished part [94/96]
Finished part [95/96]
Finished part [96/96]
+prfl dev_to_host_copy = 0us
+prfl fft = 80945us
+prfl second_function = 1810us
+prfl window_function = 674201us
+'zeta.csv' -> 'zeta-gramcharlier.csv'
+Input file = /home/igankevich/workspace/arma-thesis/config/nit-propagating-skewnormal
+Output grid size = (200,40,40)
+Output grid patch size = (1,1,1)
+Model = MA
+Verification scheme = manual
+MA model = order=(20,10,10),acf.shape=(20,10,10),algorithm=fixed_point_iteration
+Velocity potential solver name = N4arma8velocity21High_amplitude_solverIdEE
+Velocity potential solver = wnmax=from (0,0) to (0,0.25) npoints (2,2),depth=12,domain=from (10,-12) to (10,3) npoints (1,128)
+NIT transform = dist=skew_normal,mean=0,stdev=1,alpha=1,interpolation_nodes=100,interpolation_order=12,gram_charlier_order=20
+err = 0.906446
+err = 0.711503
+err = 0.697377
+err = 1.8528
+err = 2.67306
+err = 40.4663
+err = 46.4794
+err = 364.63
+err = 404.774
+err = 2335.07
+err = 2527.48
+err = 11727.3
+err = 12493.9
+err = 49080.4
+err = 51693.7
+err = 177912
+err = 185801
+err = 573976
+err = 595541
+err = 1.68124e+06
trim = 3
-ACF variance = 5
-fixed_point_iteration:Iteration=0, var_wn=2.70831
-fixed_point_iteration:Iteration=1, var_wn=1.93791
-fixed_point_iteration:Iteration=2, var_wn=1.54801
-fixed_point_iteration:Iteration=3, var_wn=1.31202
-fixed_point_iteration:Iteration=4, var_wn=1.15328
-fixed_point_iteration:Iteration=5, var_wn=1.0386
-fixed_point_iteration:Iteration=6, var_wn=0.951442
-fixed_point_iteration:Iteration=7, var_wn=0.882674
-fixed_point_iteration:Iteration=8, var_wn=0.82688
-fixed_point_iteration:Iteration=9, var_wn=0.780623
-fixed_point_iteration:Iteration=10, var_wn=0.74161
-fixed_point_iteration:Iteration=11, var_wn=0.708244
-fixed_point_iteration:Iteration=12, var_wn=0.679374
-fixed_point_iteration:Iteration=13, var_wn=0.654145
-fixed_point_iteration:Iteration=14, var_wn=0.63191
-fixed_point_iteration:Iteration=15, var_wn=0.612168
-fixed_point_iteration:Iteration=16, var_wn=0.594523
-fixed_point_iteration:Iteration=17, var_wn=0.578663
-fixed_point_iteration:Iteration=18, var_wn=0.564333
-fixed_point_iteration:Iteration=19, var_wn=0.551325
-fixed_point_iteration:Iteration=20, var_wn=0.539469
-fixed_point_iteration:Iteration=21, var_wn=0.528623
-fixed_point_iteration:Iteration=22, var_wn=0.518666
-fixed_point_iteration:Iteration=23, var_wn=0.509497
-fixed_point_iteration:Iteration=24, var_wn=0.50103
-fixed_point_iteration:Iteration=25, var_wn=0.493191
-fixed_point_iteration:Iteration=26, var_wn=0.485915
-fixed_point_iteration:Iteration=27, var_wn=0.479148
-fixed_point_iteration:Iteration=28, var_wn=0.472841
-fixed_point_iteration:Iteration=29, var_wn=0.466951
-fixed_point_iteration:Iteration=30, var_wn=0.461442
-fixed_point_iteration:Iteration=31, var_wn=0.456279
-fixed_point_iteration:Iteration=32, var_wn=0.451435
-fixed_point_iteration:Iteration=33, var_wn=0.446882
-fixed_point_iteration:Iteration=34, var_wn=0.442597
-fixed_point_iteration:Iteration=35, var_wn=0.43856
-fixed_point_iteration:Iteration=36, var_wn=0.434752
-fixed_point_iteration:Iteration=37, var_wn=0.431155
-fixed_point_iteration:Iteration=38, var_wn=0.427755
-fixed_point_iteration:Iteration=39, var_wn=0.424537
-fixed_point_iteration:Iteration=40, var_wn=0.42149
-fixed_point_iteration:Iteration=41, var_wn=0.4186
-fixed_point_iteration:Iteration=42, var_wn=0.415859
-fixed_point_iteration:Iteration=43, var_wn=0.413256
-fixed_point_iteration:Iteration=44, var_wn=0.410782
-fixed_point_iteration:Iteration=45, var_wn=0.408429
-fixed_point_iteration:Iteration=46, var_wn=0.406191
-fixed_point_iteration:Iteration=47, var_wn=0.404059
-fixed_point_iteration:Iteration=48, var_wn=0.402028
-fixed_point_iteration:Iteration=49, var_wn=0.400092
-fixed_point_iteration:Iteration=50, var_wn=0.398246
-fixed_point_iteration:Iteration=51, var_wn=0.396483
-fixed_point_iteration:Iteration=52, var_wn=0.3948
-fixed_point_iteration:Iteration=53, var_wn=0.393193
-fixed_point_iteration:Iteration=54, var_wn=0.391656
-fixed_point_iteration:Iteration=55, var_wn=0.390187
-fixed_point_iteration:Iteration=56, var_wn=0.388782
-fixed_point_iteration:Iteration=57, var_wn=0.387438
-fixed_point_iteration:Iteration=58, var_wn=0.386151
-fixed_point_iteration:Iteration=59, var_wn=0.384918
-fixed_point_iteration:Iteration=60, var_wn=0.383738
-fixed_point_iteration:Iteration=61, var_wn=0.382606
-fixed_point_iteration:Iteration=62, var_wn=0.381522
-fixed_point_iteration:Iteration=63, var_wn=0.380482
-fixed_point_iteration:Iteration=64, var_wn=0.379485
-fixed_point_iteration:Iteration=65, var_wn=0.378528
-fixed_point_iteration:Iteration=66, var_wn=0.37761
-fixed_point_iteration:Iteration=67, var_wn=0.376728
-fixed_point_iteration:Iteration=68, var_wn=0.375882
-fixed_point_iteration:Iteration=69, var_wn=0.37507
-fixed_point_iteration:Iteration=70, var_wn=0.374289
-fixed_point_iteration:Iteration=71, var_wn=0.373539
-fixed_point_iteration:Iteration=72, var_wn=0.372818
-fixed_point_iteration:Iteration=73, var_wn=0.372126
-fixed_point_iteration:Iteration=74, var_wn=0.37146
-fixed_point_iteration:Iteration=75, var_wn=0.370819
-fixed_point_iteration:Iteration=76, var_wn=0.370204
-fixed_point_iteration:Iteration=77, var_wn=0.369611
-fixed_point_iteration:Iteration=78, var_wn=0.369042
-fixed_point_iteration:Iteration=79, var_wn=0.368493
-fixed_point_iteration:Iteration=80, var_wn=0.367966
-fixed_point_iteration:Iteration=81, var_wn=0.367458
-fixed_point_iteration:Iteration=82, var_wn=0.366969
-fixed_point_iteration:Iteration=83, var_wn=0.366499
-fixed_point_iteration:Iteration=84, var_wn=0.366046
-fixed_point_iteration:Iteration=85, var_wn=0.365609
-fixed_point_iteration:Iteration=86, var_wn=0.365189
-fixed_point_iteration:Iteration=87, var_wn=0.364785
-fixed_point_iteration:Iteration=88, var_wn=0.364395
-fixed_point_iteration:Iteration=89, var_wn=0.364019
-fixed_point_iteration:Iteration=90, var_wn=0.363657
-fixed_point_iteration:Iteration=91, var_wn=0.363309
-fixed_point_iteration:Iteration=92, var_wn=0.362973
-fixed_point_iteration:Iteration=93, var_wn=0.362649
-fixed_point_iteration:Iteration=94, var_wn=0.362337
-fixed_point_iteration:Iteration=95, var_wn=0.362036
-fixed_point_iteration:Iteration=96, var_wn=0.361746
-fixed_point_iteration:Iteration=97, var_wn=0.361466
-fixed_point_iteration:Iteration=98, var_wn=0.361196
-fixed_point_iteration:Iteration=99, var_wn=0.360936
-fixed_point_iteration:Iteration=100, var_wn=0.360686
-fixed_point_iteration:Iteration=101, var_wn=0.360444
-fixed_point_iteration:Iteration=102, var_wn=0.360211
-fixed_point_iteration:Iteration=103, var_wn=0.359986
-fixed_point_iteration:Iteration=104, var_wn=0.359769
-fixed_point_iteration:Iteration=105, var_wn=0.35956
-fixed_point_iteration:Iteration=106, var_wn=0.359358
-fixed_point_iteration:Iteration=107, var_wn=0.359163
-fixed_point_iteration:Iteration=108, var_wn=0.358975
-fixed_point_iteration:Iteration=109, var_wn=0.358794
-fixed_point_iteration:Iteration=110, var_wn=0.358619
-fixed_point_iteration:Iteration=111, var_wn=0.35845
-fixed_point_iteration:Iteration=112, var_wn=0.358287
-fixed_point_iteration:Iteration=113, var_wn=0.35813
-fixed_point_iteration:Iteration=114, var_wn=0.357979
-fixed_point_iteration:Iteration=115, var_wn=0.357832
-fixed_point_iteration:Iteration=116, var_wn=0.357691
-fixed_point_iteration:Iteration=117, var_wn=0.357555
-fixed_point_iteration:Iteration=118, var_wn=0.357423
-fixed_point_iteration:Iteration=119, var_wn=0.357296
-fixed_point_iteration:Iteration=120, var_wn=0.357173
-fixed_point_iteration:Iteration=121, var_wn=0.357055
-fixed_point_iteration:Iteration=122, var_wn=0.356941
-fixed_point_iteration:Iteration=123, var_wn=0.35683
-fixed_point_iteration:Iteration=124, var_wn=0.356724
-fixed_point_iteration:Iteration=125, var_wn=0.356621
-fixed_point_iteration:Iteration=126, var_wn=0.356522
-fixed_point_iteration:Iteration=127, var_wn=0.356426
-fixed_point_iteration:Iteration=128, var_wn=0.356334
-fixed_point_iteration:Iteration=129, var_wn=0.356244
-fixed_point_iteration:Iteration=130, var_wn=0.356158
-fixed_point_iteration:Iteration=131, var_wn=0.356075
-fixed_point_iteration:Iteration=132, var_wn=0.355994
-fixed_point_iteration:Iteration=133, var_wn=0.355917
-fixed_point_iteration:Iteration=134, var_wn=0.355842
-fixed_point_iteration:Iteration=135, var_wn=0.355769
-fixed_point_iteration:Iteration=136, var_wn=0.355699
-fixed_point_iteration:Iteration=137, var_wn=0.355632
-fixed_point_iteration:Iteration=138, var_wn=0.355566
-fixed_point_iteration:Iteration=139, var_wn=0.355504
-fixed_point_iteration:Iteration=140, var_wn=0.355443
-fixed_point_iteration:Iteration=141, var_wn=0.355384
-fixed_point_iteration:Iteration=142, var_wn=0.355327
-fixed_point_iteration:Iteration=143, var_wn=0.355272
-fixed_point_iteration:Iteration=144, var_wn=0.35522
-fixed_point_iteration:Iteration=145, var_wn=0.355168
-fixed_point_iteration:Iteration=146, var_wn=0.355119
-fixed_point_iteration:Iteration=147, var_wn=0.355071
-fixed_point_iteration:Iteration=148, var_wn=0.355025
-fixed_point_iteration:Iteration=149, var_wn=0.354981
-fixed_point_iteration:Iteration=150, var_wn=0.354938
-fixed_point_iteration:Iteration=151, var_wn=0.354896
-fixed_point_iteration:Iteration=152, var_wn=0.354856
-fixed_point_iteration:Iteration=153, var_wn=0.354818
-fixed_point_iteration:Iteration=154, var_wn=0.35478
-fixed_point_iteration:Iteration=155, var_wn=0.354744
-fixed_point_iteration:Iteration=156, var_wn=0.354709
-fixed_point_iteration:Iteration=157, var_wn=0.354676
-fixed_point_iteration:Iteration=158, var_wn=0.354643
-fixed_point_iteration:Iteration=159, var_wn=0.354612
-fixed_point_iteration:Iteration=160, var_wn=0.354581
-fixed_point_iteration:Iteration=161, var_wn=0.354552
-fixed_point_iteration:Iteration=162, var_wn=0.354523
-fixed_point_iteration:Iteration=163, var_wn=0.354496
-fixed_point_iteration:Iteration=164, var_wn=0.35447
-fixed_point_iteration:Iteration=165, var_wn=0.354444
-fixed_point_iteration:Iteration=166, var_wn=0.354419
-fixed_point_iteration:Iteration=167, var_wn=0.354396
-fixed_point_iteration:Iteration=168, var_wn=0.354373
-fixed_point_iteration:Iteration=169, var_wn=0.35435
-fixed_point_iteration:Iteration=170, var_wn=0.354329
-fixed_point_iteration:Iteration=171, var_wn=0.354308
-fixed_point_iteration:Iteration=172, var_wn=0.354288
-fixed_point_iteration:Iteration=173, var_wn=0.354269
-fixed_point_iteration:Iteration=174, var_wn=0.35425
-fixed_point_iteration:Iteration=175, var_wn=0.354232
-fixed_point_iteration:Iteration=176, var_wn=0.354214
-fixed_point_iteration:Iteration=177, var_wn=0.354197
-fixed_point_iteration:Iteration=178, var_wn=0.354181
-fixed_point_iteration:Iteration=179, var_wn=0.354165
-fixed_point_iteration:Iteration=180, var_wn=0.35415
-fixed_point_iteration:Iteration=181, var_wn=0.354135
-fixed_point_iteration:Iteration=182, var_wn=0.354121
-fixed_point_iteration:Iteration=183, var_wn=0.354107
-fixed_point_iteration:Iteration=184, var_wn=0.354094
-fixed_point_iteration:Iteration=185, var_wn=0.354081
-fixed_point_iteration:Iteration=186, var_wn=0.354069
-fixed_point_iteration:Iteration=187, var_wn=0.354057
-fixed_point_iteration:Iteration=188, var_wn=0.354046
-fixed_point_iteration:Iteration=189, var_wn=0.354034
-fixed_point_iteration:Iteration=190, var_wn=0.354024
-fixed_point_iteration:Iteration=191, var_wn=0.354013
-fixed_point_iteration:Iteration=192, var_wn=0.354003
-fixed_point_iteration:Iteration=193, var_wn=0.353993
-WN variance = 0.353993
+ACF variance = 1
+fixed_point_iteration:Iteration=0, var_wn=0.541662
+fixed_point_iteration:Iteration=1, var_wn=0.387581
+fixed_point_iteration:Iteration=2, var_wn=0.309602
+fixed_point_iteration:Iteration=3, var_wn=0.262404
+fixed_point_iteration:Iteration=4, var_wn=0.230656
+fixed_point_iteration:Iteration=5, var_wn=0.207721
+fixed_point_iteration:Iteration=6, var_wn=0.190288
+fixed_point_iteration:Iteration=7, var_wn=0.176535
+fixed_point_iteration:Iteration=8, var_wn=0.165376
+fixed_point_iteration:Iteration=9, var_wn=0.156125
+fixed_point_iteration:Iteration=10, var_wn=0.148322
+fixed_point_iteration:Iteration=11, var_wn=0.141649
+fixed_point_iteration:Iteration=12, var_wn=0.135875
+fixed_point_iteration:Iteration=13, var_wn=0.130829
+fixed_point_iteration:Iteration=14, var_wn=0.126382
+fixed_point_iteration:Iteration=15, var_wn=0.122434
+fixed_point_iteration:Iteration=16, var_wn=0.118905
+fixed_point_iteration:Iteration=17, var_wn=0.115733
+fixed_point_iteration:Iteration=18, var_wn=0.112867
+fixed_point_iteration:Iteration=19, var_wn=0.110265
+fixed_point_iteration:Iteration=20, var_wn=0.107894
+fixed_point_iteration:Iteration=21, var_wn=0.105725
+fixed_point_iteration:Iteration=22, var_wn=0.103733
+fixed_point_iteration:Iteration=23, var_wn=0.101899
+fixed_point_iteration:Iteration=24, var_wn=0.100206
+fixed_point_iteration:Iteration=25, var_wn=0.0986382
+fixed_point_iteration:Iteration=26, var_wn=0.0971831
+fixed_point_iteration:Iteration=27, var_wn=0.0958297
+fixed_point_iteration:Iteration=28, var_wn=0.0945682
+fixed_point_iteration:Iteration=29, var_wn=0.0933903
+fixed_point_iteration:Iteration=30, var_wn=0.0922883
+fixed_point_iteration:Iteration=31, var_wn=0.0912558
+fixed_point_iteration:Iteration=32, var_wn=0.0902869
+fixed_point_iteration:Iteration=33, var_wn=0.0893763
+fixed_point_iteration:Iteration=34, var_wn=0.0885194
+fixed_point_iteration:Iteration=35, var_wn=0.087712
+fixed_point_iteration:Iteration=36, var_wn=0.0869503
+fixed_point_iteration:Iteration=37, var_wn=0.086231
+fixed_point_iteration:Iteration=38, var_wn=0.085551
+fixed_point_iteration:Iteration=39, var_wn=0.0849075
+fixed_point_iteration:Iteration=40, var_wn=0.0842979
+fixed_point_iteration:Iteration=41, var_wn=0.0837201
+fixed_point_iteration:Iteration=42, var_wn=0.0831718
+fixed_point_iteration:Iteration=43, var_wn=0.0826511
+fixed_point_iteration:Iteration=44, var_wn=0.0821564
+fixed_point_iteration:Iteration=45, var_wn=0.0816859
+fixed_point_iteration:Iteration=46, var_wn=0.0812382
+fixed_point_iteration:Iteration=47, var_wn=0.0808119
+fixed_point_iteration:Iteration=48, var_wn=0.0804057
+fixed_point_iteration:Iteration=49, var_wn=0.0800185
+fixed_point_iteration:Iteration=50, var_wn=0.0796491
+fixed_point_iteration:Iteration=51, var_wn=0.0792966
+fixed_point_iteration:Iteration=52, var_wn=0.07896
+fixed_point_iteration:Iteration=53, var_wn=0.0786385
+fixed_point_iteration:Iteration=54, var_wn=0.0783313
+fixed_point_iteration:Iteration=55, var_wn=0.0780375
+fixed_point_iteration:Iteration=56, var_wn=0.0777565
+fixed_point_iteration:Iteration=57, var_wn=0.0774875
+fixed_point_iteration:Iteration=58, var_wn=0.0772301
+fixed_point_iteration:Iteration=59, var_wn=0.0769836
+fixed_point_iteration:Iteration=60, var_wn=0.0767475
+fixed_point_iteration:Iteration=61, var_wn=0.0765213
+fixed_point_iteration:Iteration=62, var_wn=0.0763044
+fixed_point_iteration:Iteration=63, var_wn=0.0760964
+fixed_point_iteration:Iteration=64, var_wn=0.0758969
+fixed_point_iteration:Iteration=65, var_wn=0.0757056
+fixed_point_iteration:Iteration=66, var_wn=0.075522
+fixed_point_iteration:Iteration=67, var_wn=0.0753457
+fixed_point_iteration:Iteration=68, var_wn=0.0751764
+fixed_point_iteration:Iteration=69, var_wn=0.0750139
+fixed_point_iteration:Iteration=70, var_wn=0.0748578
+fixed_point_iteration:Iteration=71, var_wn=0.0747078
+fixed_point_iteration:Iteration=72, var_wn=0.0745637
+fixed_point_iteration:Iteration=73, var_wn=0.0744251
+fixed_point_iteration:Iteration=74, var_wn=0.0742919
+fixed_point_iteration:Iteration=75, var_wn=0.0741639
+fixed_point_iteration:Iteration=76, var_wn=0.0740407
+fixed_point_iteration:Iteration=77, var_wn=0.0739223
+fixed_point_iteration:Iteration=78, var_wn=0.0738083
+fixed_point_iteration:Iteration=79, var_wn=0.0736987
+fixed_point_iteration:Iteration=80, var_wn=0.0735932
+fixed_point_iteration:Iteration=81, var_wn=0.0734916
+fixed_point_iteration:Iteration=82, var_wn=0.0733939
+fixed_point_iteration:Iteration=83, var_wn=0.0732998
+fixed_point_iteration:Iteration=84, var_wn=0.0732091
+fixed_point_iteration:Iteration=85, var_wn=0.0731219
+fixed_point_iteration:Iteration=86, var_wn=0.0730379
+fixed_point_iteration:Iteration=87, var_wn=0.0729569
+fixed_point_iteration:Iteration=88, var_wn=0.072879
+fixed_point_iteration:Iteration=89, var_wn=0.0728038
+fixed_point_iteration:Iteration=90, var_wn=0.0727315
+fixed_point_iteration:Iteration=91, var_wn=0.0726617
+fixed_point_iteration:Iteration=92, var_wn=0.0725945
+fixed_point_iteration:Iteration=93, var_wn=0.0725298
+fixed_point_iteration:Iteration=94, var_wn=0.0724673
+fixed_point_iteration:Iteration=95, var_wn=0.0724072
+fixed_point_iteration:Iteration=96, var_wn=0.0723491
+fixed_point_iteration:Iteration=97, var_wn=0.0722932
+fixed_point_iteration:Iteration=98, var_wn=0.0722393
+fixed_point_iteration:Iteration=99, var_wn=0.0721873
+fixed_point_iteration:Iteration=100, var_wn=0.0721372
+fixed_point_iteration:Iteration=101, var_wn=0.0720888
+fixed_point_iteration:Iteration=102, var_wn=0.0720422
+fixed_point_iteration:Iteration=103, var_wn=0.0719972
+fixed_point_iteration:Iteration=104, var_wn=0.0719538
+fixed_point_iteration:Iteration=105, var_wn=0.0719119
+fixed_point_iteration:Iteration=106, var_wn=0.0718716
+fixed_point_iteration:Iteration=107, var_wn=0.0718326
+fixed_point_iteration:Iteration=108, var_wn=0.0717951
+fixed_point_iteration:Iteration=109, var_wn=0.0717588
+fixed_point_iteration:Iteration=110, var_wn=0.0717238
+fixed_point_iteration:Iteration=111, var_wn=0.0716901
+fixed_point_iteration:Iteration=112, var_wn=0.0716575
+fixed_point_iteration:Iteration=113, var_wn=0.0716261
+fixed_point_iteration:Iteration=114, var_wn=0.0715957
+fixed_point_iteration:Iteration=115, var_wn=0.0715664
+fixed_point_iteration:Iteration=116, var_wn=0.0715382
+fixed_point_iteration:Iteration=117, var_wn=0.0715109
+fixed_point_iteration:Iteration=118, var_wn=0.0714846
+fixed_point_iteration:Iteration=119, var_wn=0.0714592
+fixed_point_iteration:Iteration=120, var_wn=0.0714347
+fixed_point_iteration:Iteration=121, var_wn=0.071411
+fixed_point_iteration:Iteration=122, var_wn=0.0713881
+fixed_point_iteration:Iteration=123, var_wn=0.0713661
+fixed_point_iteration:Iteration=124, var_wn=0.0713448
+fixed_point_iteration:Iteration=125, var_wn=0.0713242
+fixed_point_iteration:Iteration=126, var_wn=0.0713044
+fixed_point_iteration:Iteration=127, var_wn=0.0712852
+fixed_point_iteration:Iteration=128, var_wn=0.0712667
+fixed_point_iteration:Iteration=129, var_wn=0.0712488
+fixed_point_iteration:Iteration=130, var_wn=0.0712316
+fixed_point_iteration:Iteration=131, var_wn=0.0712149
+fixed_point_iteration:Iteration=132, var_wn=0.0711988
+fixed_point_iteration:Iteration=133, var_wn=0.0711833
+fixed_point_iteration:Iteration=134, var_wn=0.0711683
+fixed_point_iteration:Iteration=135, var_wn=0.0711538
+fixed_point_iteration:Iteration=136, var_wn=0.0711398
+fixed_point_iteration:Iteration=137, var_wn=0.0711263
+fixed_point_iteration:Iteration=138, var_wn=0.0711133
+fixed_point_iteration:Iteration=139, var_wn=0.0711007
+fixed_point_iteration:Iteration=140, var_wn=0.0710885
+fixed_point_iteration:Iteration=141, var_wn=0.0710768
+fixed_point_iteration:Iteration=142, var_wn=0.0710654
+fixed_point_iteration:Iteration=143, var_wn=0.0710545
+fixed_point_iteration:Iteration=144, var_wn=0.0710439
+fixed_point_iteration:Iteration=145, var_wn=0.0710337
+fixed_point_iteration:Iteration=146, var_wn=0.0710238
+WN variance = 0.0710238
Partition size = (34,13,13)
Finished part [1/96]
Finished part [2/96]
Finished part [3/96]
Finished part [4/96]
Finished part [5/96]
Finished part [6/96]
Finished part [7/96]
Finished part [8/96]
Finished part [9/96]
Finished part [10/96]
Finished part [11/96]
Finished part [12/96]
Finished part [13/96]
Finished part [14/96]
Finished part [15/96]
Finished part [16/96]
Finished part [17/96]
Finished part [18/96]
Finished part [19/96]
Finished part [20/96]
Finished part [21/96]
Finished part [22/96]
Finished part [23/96]
Finished part [24/96]
Finished part [25/96]
Finished part [26/96]
Finished part [27/96]
Finished part [28/96]
Finished part [29/96]
Finished part [30/96]
Finished part [31/96]
Finished part [32/96]
Finished part [33/96]
Finished part [34/96]
Finished part [35/96]
Finished part [36/96]
Finished part [37/96]
Finished part [38/96]
Finished part [39/96]
Finished part [40/96]
Finished part [41/96]
Finished part [42/96]
Finished part [43/96]
Finished part [44/96]
Finished part [45/96]
Finished part [46/96]
Finished part [47/96]
Finished part [48/96]
Finished part [49/96]
Finished part [50/96]
Finished part [51/96]
Finished part [52/96]
Finished part [53/96]
Finished part [54/96]
Finished part [55/96]
Finished part [56/96]
Finished part [57/96]
Finished part [58/96]
Finished part [59/96]
Finished part [60/96]
Finished part [61/96]
Finished part [62/96]
Finished part [63/96]
Finished part [64/96]
Finished part [65/96]
Finished part [66/96]
Finished part [67/96]
Finished part [68/96]
Finished part [69/96]
Finished part [70/96]
Finished part [71/96]
Finished part [72/96]
Finished part [73/96]
Finished part [74/96]
Finished part [75/96]
Finished part [76/96]
Finished part [77/96]
Finished part [78/96]
Finished part [79/96]
Finished part [80/96]
Finished part [81/96]
Finished part [82/96]
Finished part [83/96]
Finished part [84/96]
Finished part [85/96]
Finished part [86/96]
Finished part [87/96]
Finished part [88/96]
Finished part [89/96]
Finished part [90/96]
Finished part [91/96]
Finished part [92/96]
Finished part [93/96]
Finished part [94/96]
Finished part [95/96]
Finished part [96/96]
prfl dev_to_host_copy = 0us
-prfl fft = 64818us
-prfl second_function = 1835us
-prfl window_function = 663147us
+prfl fft = 74121us
+prfl second_function = 1833us
+prfl window_function = 693556us
'zeta.csv' -> 'zeta-skewnormal.csv'
NIT for standing waves
Input file = /home/igankevich/workspace/arma-thesis/config/nit-standing-none
@@ -1274,9 +1133,9 @@ Partition size = (21,10,10)
Finished part [1/160]
Finished part [2/160]
Finished part [3/160]
Finished part [4/160]
Finished part [5/160]
Finished part [6/160]
Finished part [7/160]
Finished part [8/160]
Finished part [9/160]
Finished part [10/160]
Finished part [11/160]
Finished part [12/160]
Finished part [13/160]
Finished part [14/160]
Finished part [15/160]
Finished part [16/160]
Finished part [17/160]
Finished part [18/160]
Finished part [19/160]
Finished part [20/160]
Finished part [21/160]
Finished part [22/160]
Finished part [23/160]
Finished part [24/160]
Finished part [25/160]
Finished part [26/160]
Finished part [27/160]
Finished part [28/160]
Finished part [29/160]
Finished part [30/160]
Finished part [31/160]
Finished part [32/160]
Finished part [33/160]
Finished part [34/160]
Finished part [35/160]
Finished part [36/160]
Finished part [37/160]
Finished part [38/160]
Finished part [39/160]
Finished part [40/160]
Finished part [41/160]
Finished part [42/160]
Finished part [43/160]
Finished part [44/160]
Finished part [45/160]
Finished part [46/160]
Finished part [47/160]
Finished part [48/160]
Finished part [49/160]
Finished part [50/160]
Finished part [51/160]
Finished part [52/160]
Finished part [53/160]
Finished part [54/160]
Finished part [55/160]
Finished part [56/160]
Finished part [57/160]
Finished part [58/160]
Finished part [59/160]
Finished part [60/160]
Finished part [61/160]
Finished part [62/160]
Finished part [63/160]
Finished part [64/160]
Finished part [65/160]
Finished part [66/160]
Finished part [67/160]
Finished part [68/160]
Finished part [69/160]
Finished part [70/160]
Finished part [71/160]
Finished part [72/160]
Finished part [73/160]
Finished part [74/160]
Finished part [75/160]
Finished part [76/160]
Finished part [77/160]
Finished part [78/160]
Finished part [79/160]
Finished part [80/160]
Finished part [81/160]
Finished part [82/160]
Finished part [83/160]
Finished part [84/160]
Finished part [85/160]
Finished part [86/160]
Finished part [87/160]
Finished part [88/160]
Finished part [89/160]
Finished part [90/160]
Finished part [91/160]
Finished part [92/160]
Finished part [93/160]
Finished part [94/160]
Finished part [95/160]
Finished part [96/160]
Finished part [97/160]
Finished part [98/160]
Finished part [99/160]
Finished part [100/160]
Finished part [101/160]
Finished part [102/160]
Finished part [103/160]
Finished part [104/160]
Finished part [105/160]
Finished part [106/160]
Finished part [107/160]
Finished part [108/160]
Finished part [109/160]
Finished part [110/160]
Finished part [111/160]
Finished part [112/160]
Finished part [113/160]
Finished part [114/160]
Finished part [115/160]
Finished part [116/160]
Finished part [117/160]
Finished part [118/160]
Finished part [119/160]
Finished part [120/160]
Finished part [121/160]
Finished part [122/160]
Finished part [123/160]
Finished part [124/160]
Finished part [125/160]
Finished part [126/160]
Finished part [127/160]
Finished part [128/160]
Finished part [129/160]
Finished part [130/160]
Finished part [131/160]
Finished part [132/160]
Finished part [133/160]
Finished part [134/160]
Finished part [135/160]
Finished part [136/160]
Finished part [137/160]
Finished part [138/160]
Finished part [139/160]
Finished part [140/160]
Finished part [141/160]
Finished part [142/160]
Finished part [143/160]
Finished part [144/160]
Finished part [145/160]
Finished part [146/160]
Finished part [147/160]
Finished part [148/160]
Finished part [149/160]
Finished part [150/160]
Finished part [151/160]
Finished part [152/160]
Finished part [153/160]
Finished part [154/160]
Finished part [155/160]
Finished part [156/160]
Finished part [157/160]
Finished part [158/160]
Finished part [159/160]
Finished part [160/160]
Zeta size = (192,32,32)
prfl dev_to_host_copy = 0us
-prfl fft = 67400us
-prfl second_function = 1751us
-prfl window_function = 705738us
+prfl fft = 120726us
+prfl second_function = 2048us
+prfl window_function = 963006us
'zeta.csv' -> 'zeta-none.csv'
Input file = /home/igankevich/workspace/arma-thesis/config/nit-standing-gramcharlier
Output grid size = (200,40,40)
@@ -1314,9 +1173,9 @@ Partition size = (21,10,10)
Finished part [1/160]
Finished part [2/160]
Finished part [3/160]
Finished part [4/160]
Finished part [5/160]
Finished part [6/160]
Finished part [7/160]
Finished part [8/160]
Finished part [9/160]
Finished part [10/160]
Finished part [11/160]
Finished part [12/160]
Finished part [13/160]
Finished part [14/160]
Finished part [15/160]
Finished part [16/160]
Finished part [17/160]
Finished part [18/160]
Finished part [19/160]
Finished part [20/160]
Finished part [21/160]
Finished part [22/160]
Finished part [23/160]
Finished part [24/160]
Finished part [25/160]
Finished part [26/160]
Finished part [27/160]
Finished part [28/160]
Finished part [29/160]
Finished part [30/160]
Finished part [31/160]
Finished part [32/160]
Finished part [33/160]
Finished part [34/160]
Finished part [35/160]
Finished part [36/160]
Finished part [37/160]
Finished part [38/160]
Finished part [39/160]
Finished part [40/160]
Finished part [41/160]
Finished part [42/160]
Finished part [43/160]
Finished part [44/160]
Finished part [45/160]
Finished part [46/160]
Finished part [47/160]
Finished part [48/160]
Finished part [49/160]
Finished part [50/160]
Finished part [51/160]
Finished part [52/160]
Finished part [53/160]
Finished part [54/160]
Finished part [55/160]
Finished part [56/160]
Finished part [57/160]
Finished part [58/160]
Finished part [59/160]
Finished part [60/160]
Finished part [61/160]
Finished part [62/160]
Finished part [63/160]
Finished part [64/160]
Finished part [65/160]
Finished part [66/160]
Finished part [67/160]
Finished part [68/160]
Finished part [69/160]
Finished part [70/160]
Finished part [71/160]
Finished part [72/160]
Finished part [73/160]
Finished part [74/160]
Finished part [75/160]
Finished part [76/160]
Finished part [77/160]
Finished part [78/160]
Finished part [79/160]
Finished part [80/160]
Finished part [81/160]
Finished part [82/160]
Finished part [83/160]
Finished part [84/160]
Finished part [85/160]
Finished part [86/160]
Finished part [87/160]
Finished part [88/160]
Finished part [89/160]
Finished part [90/160]
Finished part [91/160]
Finished part [92/160]
Finished part [93/160]
Finished part [94/160]
Finished part [95/160]
Finished part [96/160]
Finished part [97/160]
Finished part [98/160]
Finished part [99/160]
Finished part [100/160]
Finished part [101/160]
Finished part [102/160]
Finished part [103/160]
Finished part [104/160]
Finished part [105/160]
Finished part [106/160]
Finished part [107/160]
Finished part [108/160]
Finished part [109/160]
Finished part [110/160]
Finished part [111/160]
Finished part [112/160]
Finished part [113/160]
Finished part [114/160]
Finished part [115/160]
Finished part [116/160]
Finished part [117/160]
Finished part [118/160]
Finished part [119/160]
Finished part [120/160]
Finished part [121/160]
Finished part [122/160]
Finished part [123/160]
Finished part [124/160]
Finished part [125/160]
Finished part [126/160]
Finished part [127/160]
Finished part [128/160]
Finished part [129/160]
Finished part [130/160]
Finished part [131/160]
Finished part [132/160]
Finished part [133/160]
Finished part [134/160]
Finished part [135/160]
Finished part [136/160]
Finished part [137/160]
Finished part [138/160]
Finished part [139/160]
Finished part [140/160]
Finished part [141/160]
Finished part [142/160]
Finished part [143/160]
Finished part [144/160]
Finished part [145/160]
Finished part [146/160]
Finished part [147/160]
Finished part [148/160]
Finished part [149/160]
Finished part [150/160]
Finished part [151/160]
Finished part [152/160]
Finished part [153/160]
Finished part [154/160]
Finished part [155/160]
Finished part [156/160]
Finished part [157/160]
Finished part [158/160]
Finished part [159/160]
Finished part [160/160]
Zeta size = (192,32,32)
prfl dev_to_host_copy = 0us
-prfl fft = 67196us
-prfl second_function = 1830us
-prfl window_function = 664720us
+prfl fft = 88660us
+prfl second_function = 1828us
+prfl window_function = 720888us
'zeta.csv' -> 'zeta-gramcharlier.csv'
Input file = /home/igankevich/workspace/arma-thesis/config/nit-standing-skewnormal
Output grid size = (200,40,40)
@@ -1354,9 +1213,9 @@ Partition size = (21,10,10)
Finished part [1/160]
Finished part [2/160]
Finished part [3/160]
Finished part [4/160]
Finished part [5/160]
Finished part [6/160]
Finished part [7/160]
Finished part [8/160]
Finished part [9/160]
Finished part [10/160]
Finished part [11/160]
Finished part [12/160]
Finished part [13/160]
Finished part [14/160]
Finished part [15/160]
Finished part [16/160]
Finished part [17/160]
Finished part [18/160]
Finished part [19/160]
Finished part [20/160]
Finished part [21/160]
Finished part [22/160]
Finished part [23/160]
Finished part [24/160]
Finished part [25/160]
Finished part [26/160]
Finished part [27/160]
Finished part [28/160]
Finished part [29/160]
Finished part [30/160]
Finished part [31/160]
Finished part [32/160]
Finished part [33/160]
Finished part [34/160]
Finished part [35/160]
Finished part [36/160]
Finished part [37/160]
Finished part [38/160]
Finished part [39/160]
Finished part [40/160]
Finished part [41/160]
Finished part [42/160]
Finished part [43/160]
Finished part [44/160]
Finished part [45/160]
Finished part [46/160]
Finished part [47/160]
Finished part [48/160]
Finished part [49/160]
Finished part [50/160]
Finished part [51/160]
Finished part [52/160]
Finished part [53/160]
Finished part [54/160]
Finished part [55/160]
Finished part [56/160]
Finished part [57/160]
Finished part [58/160]
Finished part [59/160]
Finished part [60/160]
Finished part [61/160]
Finished part [62/160]
Finished part [63/160]
Finished part [64/160]
Finished part [65/160]
Finished part [66/160]
Finished part [67/160]
Finished part [68/160]
Finished part [69/160]
Finished part [70/160]
Finished part [71/160]
Finished part [72/160]
Finished part [73/160]
Finished part [74/160]
Finished part [75/160]
Finished part [76/160]
Finished part [77/160]
Finished part [78/160]
Finished part [79/160]
Finished part [80/160]
Finished part [81/160]
Finished part [82/160]
Finished part [83/160]
Finished part [84/160]
Finished part [85/160]
Finished part [86/160]
Finished part [87/160]
Finished part [88/160]
Finished part [89/160]
Finished part [90/160]
Finished part [91/160]
Finished part [92/160]
Finished part [93/160]
Finished part [94/160]
Finished part [95/160]
Finished part [96/160]
Finished part [97/160]
Finished part [98/160]
Finished part [99/160]
Finished part [100/160]
Finished part [101/160]
Finished part [102/160]
Finished part [103/160]
Finished part [104/160]
Finished part [105/160]
Finished part [106/160]
Finished part [107/160]
Finished part [108/160]
Finished part [109/160]
Finished part [110/160]
Finished part [111/160]
Finished part [112/160]
Finished part [113/160]
Finished part [114/160]
Finished part [115/160]
Finished part [116/160]
Finished part [117/160]
Finished part [118/160]
Finished part [119/160]
Finished part [120/160]
Finished part [121/160]
Finished part [122/160]
Finished part [123/160]
Finished part [124/160]
Finished part [125/160]
Finished part [126/160]
Finished part [127/160]
Finished part [128/160]
Finished part [129/160]
Finished part [130/160]
Finished part [131/160]
Finished part [132/160]
Finished part [133/160]
Finished part [134/160]
Finished part [135/160]
Finished part [136/160]
Finished part [137/160]
Finished part [138/160]
Finished part [139/160]
Finished part [140/160]
Finished part [141/160]
Finished part [142/160]
Finished part [143/160]
Finished part [144/160]
Finished part [145/160]
Finished part [146/160]
Finished part [147/160]
Finished part [148/160]
Finished part [149/160]
Finished part [150/160]
Finished part [151/160]
Finished part [152/160]
Finished part [153/160]
Finished part [154/160]
Finished part [155/160]
Finished part [156/160]
Finished part [157/160]
Finished part [158/160]
Finished part [159/160]
Finished part [160/160]
Zeta size = (192,32,32)
prfl dev_to_host_copy = 0us
-prfl fft = 71407us
-prfl second_function = 1738us
-prfl window_function = 670597us
+prfl fft = 86923us
+prfl second_function = 1889us
+prfl window_function = 842185us
'zeta.csv' -> 'zeta-skewnormal.csv'
#+end_example
@@ -2375,10 +2234,11 @@ polynomial yields
which simplifies the former equation. Optimal number of coefficients \(C_m\) is
determined by computing them sequentially and stopping when variances of both
fields become equal with desired accuracy \(\epsilon\):
-\begin{equation*}
+\begin{equation}
+ \label{eq-nit-error}
\left| \Var{z} - \sum\limits_{k=0}^m
\frac{C_k^2}{k!} \right| \leq \epsilon.
-\end{equation*}
+\end{equation}
In\nbsp{}cite:boukhanovsky1997thesis the author suggests using polynomial
approximation \(f(y)\) also for wavy surface transformation, however, in
@@ -2958,27 +2818,29 @@ arma.plot_velocity(
#+RESULTS: fig-velocity-field-2d
[[file:build/large-and-small-amplitude-velocity-field-comparison.pdf]]
-*** Verification of nonlinear inertialess transformation
+*** DONE Verification of nonlinear inertialess transformation
+CLOSED: [2017-06-12 Пн 21:05]
In order to measure the effect of NIT on the shape of the resulting wavy
surface, three realisations were generated:
- realisation with Gaussian distribution (without NIT),
-- realisation with Gram---Charlier series based distribution, and
-- realisation with skew normal distribution.
+- realisation with Gram---Charlier series (GCS) based distribution (with
+ \(\gamma_1=2.25,\gamma_2=0.4\)), and
+- realisation with skew normal distribution (with \(\alpha=1\)).
The seed of PRNG was set to be the same for all progrmme executions to make ARMA
model produce the same values for each realisation. There we two experiments: on
for standing and one for propagating waves with ACFs similar to the ones in
section\nbsp{}[[#sec-wave-acfs]].
-The results of the experiment are twofold: while the experiment showed that
+The results of the experiments are twofold: while the experiment showed that
applying NIT with GCS-based distribution makes wave profiles steeper, the same
is not true for skew normal distribution (fig.\nbsp{}[[fig-nonlinear]]). Using this
distribution results in wavy surface each \(z\)-coordinate of which is always
greater or equal to nought. So, skew normal distribution is unsuitable for NIT.
-NIT increases the wave height of standing waves and decreases the wave height of
-propagating waves. Since wave height depends on ACF, this is a consequence of
-ACF being different for each wave type. For both wave types the wave steepness
-is increased. Finally, increasing either skewness or kurtosis parameter of
-GCS-based distribution increases both wave steepness and wave height.
+NIT increases the wave height and wave steepness for both standing and
+propagating waves. Increasing either skewness or kurtosis parameter of GCS-based
+distribution increases both wave steepness and wave height. The error of ACF
+approximation (eq.\nbsp{}eqref:eq-nit-error) ranges from 0.20 for GCS-based
+distribution to 0.70 for skew normal distribution.
#+name: fig-nit
#+header: :width 5 :height 5 :pointsize 8
@@ -2996,10 +2858,57 @@ arma.plot_nonlinear(file.path("build", "nit-standing"), args)
#+end_src
#+label: fig-nit
+#+caption: Wavy surface slices with different distributions of wave elevation (Gaussian, Gram---Charlier series based and skew normal).
#+RESULTS: fig-nit
[[file:build/nit.pdf]]
+#+name: tab-nit-error
+#+caption: Errors of ACF approximations (differences in variances) for different wave elevation distributions.
+| Wave type | Distribution | Error | No. of coef. | Wave height |
+|-------------+--------------+-------+--------------+-------------|
+| propagating | Gaussian | | | 2.41 |
+| propagating | GCS-based | 0.20 | 2 | 2.75 |
+| propagating | skew normal | 0.70 | 3 | 1.37 |
+| standing | Gaussian | | | 1.73 |
+| standing | GCS-based | 0.26 | 2 | 1.96 |
+| standing | skew normal | 0.70 | 3 | 0.94 |
+
+To summarise, the only test case that showed acceptable results is realisation
+with GCS-based distribution for both standing and propagating waves. Skew normal
+distribution realisations have warped wavy surface for both types of waves.
+GCS-based realisations have large error of ACF approximation, which results in
+increase of wave height. The reason for the large error is that Gram---Charlier
+series are not accurate as they do not converge for all possible
+functions\nbsp{}cite:wallace1958asymptotic. Despite the large error, the change
+in wave height is small.
+
+**** Wave height :noexport:
+:PROPERTIES:
+:header-args:R: :results output org
+:END:
+
+#+header:
+#+begin_src R :results output org
+source(file.path("R", "nonlinear.R"))
+propagating <- arma.print_wave_height(file.path("build", "nit-propagating"))
+standing <- arma.print_wave_height(file.path("build", "nit-standing"))
+result <- data.frame(
+ h1=c(propagating$h1, standing$h1),
+ h2=c(propagating$h2, standing$h2),
+ h3=c(propagating$h3, standing$h3)
+)
+rownames(result) <- c('propagating', 'standing')
+colnames(result) <- c('none', 'gcs', 'sn')
+ascii(result)
+#+end_src
+#+RESULTS:
+#+BEGIN_SRC org
+| | none | gcs | sn |
+|-------------+------+------+------|
+| propagating | 2.41 | 2.75 | 1.37 |
+| standing | 1.73 | 1.96 | 0.94 |
+#+END_SRC
*** Non-physical nature of ARMA model
ARMA model, owing to its non-physical nature, does not have the notion of ocean
diff --git a/bib/refs.bib b/bib/refs.bib
@@ -1799,3 +1799,14 @@ art_number={6710358},
pages = {1203--1233},
url = {http://www.graphviz.org/}
}
+
+@article{wallace1958asymptotic,
+ title={Asymptotic approximations to distributions},
+ author={Wallace, David L},
+ journal={The Annals of Mathematical Statistics},
+ volume={29},
+ number={3},
+ pages={635--654},
+ year={1958},
+ publisher={JSTOR}
+}