arma-thesis

git clone https://git.igankevich.com/arma-thesis.git
Log | Files | Refs | LICENSE

commit a846cd78265af269dd0705b0782b65e83b494e05
parent 06311ada020897c923caac7aea289a9dd545e58f
Author: Ivan Gankevich <igankevich@ya.ru>
Date:   Mon, 31 Oct 2016 22:53:54 +0300

Add outline for the second part!

Diffstat:
phd-diss-ru.org | 37+++++++++++++++++++++++--------------
phd-diss.org | 247+++++++++++++++++++++++++++++++++++++++++--------------------------------------
2 files changed, 150 insertions(+), 134 deletions(-)

diff --git a/phd-diss-ru.org b/phd-diss-ru.org @@ -281,23 +281,14 @@ $\zeta_z=k\zeta$, где $k$ --- волновое число. Формула я Формула дифференцируется для получения производных потенциала, а полученные значения подставляются в динамическое граничное условие для вычисления давлений. -* Применение модели АРСС в задаче имитационного моделирования морского волнения +* Модель АРСС в задаче имитационного моделирования морского волнения ** Предпосылки к поиску новой модели ветрового волнения -** Форма АКФ для разных волновых профилей -*** Два метода для определения формы АКФ -**** Аналитический метод. -**** Эмпирический метод. -*** Примеры АКФ для различных волновых профилей -**** АКФ стоячей волны. -**** АКФ прогрессивной волны. -*** Сравнение изученных методов ** Основные формулы трехмерного процесса AРСС *** Три возможных процесса **** Процесс авторегрессии (АР). **** Процесс скользящего среднего (СС). **** Смешанный процесс авторегрессии скользящего среднего (АРСС). *** Критерии выбора процесса для моделирования разных профилей волн -** Верификация интегральных характеристик взволнованной поверхности ** Моделирование нелинейности морских волн Модель АРСС позволяет учесть асимметричность распределения волновых аппликат, т.е. сгенерировать морские волны, закон распределения аппликат которых имеет @@ -341,7 +332,7 @@ $y_k|_{k=0}^N$ сетки сгенерированной поверхности где \begin{equation*} C_m = \frac{1}{\sqrt{2\pi}} - \int\limits_{0}^\infty + \int\limits_{0}^\infty f(y) H_m(y) \exp\left[ -\frac{y^2}{2} \right], \end{equation*} $H_m$ --- полином Эрмита, а $f(y)$ --- решение @@ -376,9 +367,27 @@ $\epsilon$: бисекции. Использование полиномиальной аппроксимацией в формулах для коэффициентов ряда Грама---Шарлье не приводит к аналогичным ошибкам. -** Нефизическая природа модели -* Постановка численного эксперимента -* Определение поля давлений под дискретно заданной взволнованной поверхностью +** Определение поля давлений под дискретно заданной взволнованной поверхностью +* Численные методы и результаты экспериментов +** Форма АКФ для разных волновых профилей +*** Два метода для определения формы АКФ +**** Аналитический метод. +**** Эмпирический метод. +*** Примеры АКФ для различных волновых профилей +**** АКФ стоячей волны. +**** АКФ прогрессивной волны. +*** Сравнение изученных методов +** Дополнительные формулы, методы и алгоритмы для модели АРСС +*** Аппроксимация распределения аппликат. +*** Генерация белого шума. +*** Генерация взволнованной поверхности. +** Верификация модели АРСС +*** Методика постановки численных экспериментов +*** Верификация интегральных характеристик взволнованной поверхности +*** Верификация полей потенциалов скоростей +**** Отличие от формул линейной теории. +**** Отличие от формул теории волн малой амплитуды. +*** TODO Нефизическая природа модели * Высокопроизводительный программный комплекс для моделирования морского волнения * Заключение * Благодарности diff --git a/phd-diss.org b/phd-diss.org @@ -240,7 +240,126 @@ MA process for propagating waves. With new formulae for 3 dimensions a single mixed ARMA process might be a better choice, but this is the objective of the future research. -** Verification of wavy surface integral characteristics +** Modeling non-linearity of ocean waves +** Determining wave pressures for discretely given wavy surface +* Numerical methods and experimental results +** The shape of ACF for different types of waves +*** Two methods to find ocean wave's ACF +**** Analytic method of finding the ACF. +The simplest way to find auto-covariate function for a particular ocean wave +profile is to apply Wiener---Khinchin theorem. According to this theorem the +autocorrelation $K$ of a function $\zeta$ is given by the Fourier transform of +the absolute square of the function: +\begin{equation} + K(t) = \Fourier{\left| \zeta(t) \right|^2}. + \label{eq:wiener-khinchin} +\end{equation} +When $\zeta$ is replaced with actual wave profile, this formula gives you +analytic expression for the corresponding ACF. + +For three-dimensional wave profile (2D in space and 1D in time) analytic +expression is a polynomial of high order and is best obtained via computer +algebra software. Then for practical usage it can be approximated by +superposition of exponentially decaying cosines (which is how ACF of a +stationary ARMA process looks like cite:box1976time). + +**** Empirical method of finding the ACF. +However, for three-dimensional case there exists simpler empirical method which +does not require sophisticated software to determine shape of the ACF. It is +known that ACF represented by exponentially decaying cosines of a wave profile +satisfies first order Stokes' equations for gravity waves cite:boccotti1983wind. +So, if the shape of the wave profile is the only concern, then one can simply +multiply it by a decaying exponent to get appropriate ACF. This ACF will not +reflect other wave profile parameters such as wave height and period, but opens +possibility to simulate waves of a particular non-analytic shape by "drawing" +their profile, then multiplying it by an exponent and using the resulting +function as ACF. So, this empirical method is imprecise but offers simpler +alternative to Wiener---Khinchin theorem; it is mainly useful to test ARMA +model. + +*** Examples of ACFs for various types of wave profiles +**** Standing wave. +For three-dimensional standing wave the profile is approximated by +\begin{equation} + \zeta(t, x, y) = A \sin (k_x x + k_y y) \sin (\sigma t). + \label{eq:standing-wave} +\end{equation} +In order to get ACF via analytic method one needs to multiply this expression by +a decaying exponent, because Fourier transform is defined for a function $f$ that +$f \underset{x \rightarrow \pm \infty}{\longrightarrow} 0$. The formula of the +profile then transforms to +\begin{equation} + \zeta(t, x, y) = + A + \exp\left[-\alpha (|t|+|x|+|y|) \right] + \sin (k_x x + k_y y) \sin (\sigma t). + \label{eq:decaying-standing-wave} +\end{equation} +Then, if one takes 3D Fourier transform of this expression via any capable +computer algebra software, the resulting polynomial may be fitted to the +following ACF approximation. +\begin{equation} + K(t,x,y) = + \gamma + \exp\left[-\alpha (|t|+|x|+|y|) \right] + \cos \beta t + \cos \left[ \beta x + \beta y \right]. + \label{eq:standing-wave-acf} +\end{equation} +So, after applying Wiener---Khinchin theorem we get the same formula but with +sines replaced with cosines. This replacement is important because the value of +ACF at $(0,0,0)$ equals to the variance of wave elevation, and if one used sines +the value would be wrong. + +If one tries to replicate the same formula via empirical method, the usual way +is to adapt eqref:eq:decaying-standing-wave to match eqref:eq:standing-wave-acf. +This can be done by changing the phase of the sine, or by replacing sine with +cosine to move the maximum of the function to $(0,0,0)$. + +**** Propagating wave. +Three-dimensional profile of this type of wave is approximated by +\begin{equation} + \zeta(t, x, y) = A \cos (\sigma t + k_x x + k_y y). + \label{eq:propagating-wave} +\end{equation} +For the analytic method one may repeat steps from the previous two paragraphs +with ACF approximated by +\begin{equation} + K(t,x,y) = + \gamma + \exp\left[-\alpha (|t|+|x|+|y|) \right] + \cos\left[\beta (t+x+y) \right]. + \label{eq:propagating-wave-acf} +\end{equation} +For the empirical method propagating wave profile is simply multiplied by +a decaying exponent without need to adapt the maximum value of ACF. + +*** Comparison of studied methods +To summarise, the analytic method of finding ocean wave's ACF reduces to the +following steps: +- Make wave profile decay when approach $\pm \infty$ by multiplying it by + a decaying exponent. +- Take Fourier transform of absolute square of the decaying wave profile using + computer algebra software. +- Fit the resulting polynomial to the appropriate ACF approximation. + +Two examples in this section showed that in case of standing and propagating +waves their decaying profiles resemble the corresponding ACFs with the exception +that the origin should be moved to the function's maximal value for the ACF to +be useful in ARMA model simulations. So, using the empirical method the ACF is +found in the following steps: +- Make wave profile decay when approach $\pm \infty$ by multiplying it by + a decaying exponent. +- Move maximum value to the origin by adjusting phases or using trigonometric + identities to shift the phase of the resulting function. + +** Additional formulae, methods and algorithms for ARMA model +*** Wave elevation distribution approximation +*** White noise generation +*** Wavy surface generation +** ARMA model verification +*** Numerical experiments implementation methodology +*** Verification of wavy surface integral characteristics Research shows cite:рожков1990вероятностные that several ocean wave characteristics (e.g. wave height, wave period, wave length etc.) have Weibull distribution differing only in shape parameter (tab. [[tab:weibull-shape]]), and @@ -324,11 +443,11 @@ exit #+caption: Time slices of ACF function for standing (left column) and propagating waves (right column). #+name: fig:acf-plots -| \includegraphics{standing-acf-0} | \includegraphics{propagating-acf-00} | -| \includegraphics{standing-acf-1} | \includegraphics{propagating-acf-01} | -| \includegraphics{standing-acf-2} | \includegraphics{propagating-acf-02} | -| \includegraphics{standing-acf-3} | \includegraphics{propagating-acf-03} | -| \includegraphics{standing-acf-4} | \includegraphics{propagating-acf-04} | +| \includegraphics{standing-acf-0} | \includegraphics{propagating-acf-00} | +| \includegraphics{standing-acf-1} | \includegraphics{propagating-acf-01} | +| \includegraphics{standing-acf-2} | \includegraphics{propagating-acf-02} | +| \includegraphics{standing-acf-3} | \includegraphics{propagating-acf-03} | +| \includegraphics{standing-acf-4} | \includegraphics{propagating-acf-04} | #+caption: Quantile-quantile plots for standing waves. #+name: fig:standing-wave-distributions @@ -341,119 +460,8 @@ exit | \includegraphics{propagating-wave-length-x} | \includegraphics{propagating-wave-period} | *** TODO Discuss graphs - -** The shape of ACF for different types of waves -*** Two methods to find ocean wave's ACF -**** Analytic method of finding the ACF. -The simplest way to find auto-covariate function for a particular ocean wave -profile is to apply Wiener---Khinchin theorem. According to this theorem the -autocorrelation $K$ of a function $\zeta$ is given by the Fourier transform of -the absolute square of the function: -\begin{equation} - K(t) = \Fourier{\left| \zeta(t) \right|^2}. - \label{eq:wiener-khinchin} -\end{equation} -When $\zeta$ is replaced with actual wave profile, this formula gives you -analytic expression for the corresponding ACF. - -For three-dimensional wave profile (2D in space and 1D in time) analytic -expression is a polynomial of high order and is best obtained via computer -algebra software. Then for practical usage it can be approximated by -superposition of exponentially decaying cosines (which is how ACF of a -stationary ARMA process looks like cite:box1976time). - -**** Empirical method of finding the ACF. -However, for three-dimensional case there exists simpler empirical method which -does not require sophisticated software to determine shape of the ACF. It is -known that ACF represented by exponentially decaying cosines of a wave profile -satisfies first order Stokes' equations for gravity waves cite:boccotti1983wind. -So, if the shape of the wave profile is the only concern, then one can simply -multiply it by a decaying exponent to get appropriate ACF. This ACF will not -reflect other wave profile parameters such as wave height and period, but opens -possibility to simulate waves of a particular non-analytic shape by "drawing" -their profile, then multiplying it by an exponent and using the resulting -function as ACF. So, this empirical method is imprecise but offers simpler -alternative to Wiener---Khinchin theorem; it is mainly useful to test ARMA -model. - -*** Examples of ACFs for various types of wave profiles -**** Standing wave. -For three-dimensional standing wave the profile is approximated by -\begin{equation} - \zeta(t, x, y) = A \sin (k_x x + k_y y) \sin (\sigma t). - \label{eq:standing-wave} -\end{equation} -In order to get ACF via analytic method one needs to multiply this expression by -a decaying exponent, because Fourier transform is defined for a function $f$ that -$f \underset{x \rightarrow \pm \infty}{\longrightarrow} 0$. The formula of the -profile then transforms to -\begin{equation} - \zeta(t, x, y) = - A - \exp\left[-\alpha (|t|+|x|+|y|) \right] - \sin (k_x x + k_y y) \sin (\sigma t). - \label{eq:decaying-standing-wave} -\end{equation} -Then, if one takes 3D Fourier transform of this expression via any capable -computer algebra software, the resulting polynomial may be fitted to the -following ACF approximation. -\begin{equation} - K(t,x,y) = - \gamma - \exp\left[-\alpha (|t|+|x|+|y|) \right] - \cos \beta t - \cos \left[ \beta x + \beta y \right]. - \label{eq:standing-wave-acf} -\end{equation} -So, after applying Wiener---Khinchin theorem we get the same formula but with -sines replaced with cosines. This replacement is important because the value of -ACF at $(0,0,0)$ equals to the variance of wave elevation, and if one used sines -the value would be wrong. - -If one tries to replicate the same formula via empirical method, the usual way -is to adapt eqref:eq:decaying-standing-wave to match eqref:eq:standing-wave-acf. -This can be done by changing the phase of the sine, or by replacing sine with -cosine to move the maximum of the function to $(0,0,0)$. - -**** Propagating wave. -Three-dimensional profile of this type of wave is approximated by -\begin{equation} - \zeta(t, x, y) = A \cos (\sigma t + k_x x + k_y y). - \label{eq:propagating-wave} -\end{equation} -For the analytic method one may repeat steps from the previous two paragraphs -with ACF approximated by -\begin{equation} - K(t,x,y) = - \gamma - \exp\left[-\alpha (|t|+|x|+|y|) \right] - \cos\left[\beta (t+x+y) \right]. - \label{eq:propagating-wave-acf} -\end{equation} -For the empirical method propagating wave profile is simply multiplied by -a decaying exponent without need to adapt the maximum value of ACF. - -*** Comparison of studied methods -To summarise, the analytic method of finding ocean wave's ACF reduces to the -following steps: -- Make wave profile decay when approach $\pm \infty$ by multiplying it by - a decaying exponent. -- Take Fourier transform of absolute square of the decaying wave profile using - computer algebra software. -- Fit the resulting polynomial to the appropriate ACF approximation. - -Two examples in this section showed that in case of standing and propagating -waves their decaying profiles resemble the corresponding ACFs with the exception -that the origin should be moved to the function's maximal value for the ACF to -be useful in ARMA model simulations. So, using the empirical method the ACF is -found in the following steps: -- Make wave profile decay when approach $\pm \infty$ by multiplying it by - a decaying exponent. -- Move maximum value to the origin by adjusting phases or using trigonometric - identities to shift the phase of the resulting function. - -** Modeling non-linearity of ocean waves -** Non-physical nature of ARMA model +*** Verification of velocity potential fields +*** Non-physical nature of ARMA model ARMA model, owing to its non-physical nature, does not have the notion of ocean wave; it simulates wavy surface as a whole instead. Motions of individual waves and their shape are often rough, and the total number of waves can not be @@ -464,7 +472,6 @@ In theory, ocean waves themselves can be chosen as ACFs, the only pre-processing step is to make them decay exponentially. This is required to make AR model stationary and MA model parameters finding algorithm to converge. -* Determining wave pressures for discretely given wavy surface * High-performance software implementation of ocean wave simulation * Conclusion * Acknowledgments