arma-thesis

git clone https://git.igankevich.com/arma-thesis.git
Log | Files | Refs | LICENSE

commit 653e87bd77303501e41dabc8f3cb087d9f0d4f08
parent e73981355377723279d67208de34fe1ff563f7f2
Author: Ivan Gankevich <igankevich@ya.ru>
Date:   Mon,  5 Jun 2017 13:20:41 +0300

Add directional derivative derivation.

Diffstat:
arma-thesis-ru.org | 23+++++++++++++++++++++--
arma-thesis.org | 55++++++++++++++++++++++++++++++++++++++-----------------
2 files changed, 59 insertions(+), 19 deletions(-)

diff --git a/arma-thesis-ru.org b/arma-thesis-ru.org @@ -436,7 +436,8 @@ Motion Programme (LAMP), программе для моделирования к **** Формула для поля давлений. Задача определения поля давлений под взволнованной морской поверхностью представляет собой обратную задачу гидродинамики для несжимаемой невязкой -жидкости. Система уравнений для нее в общем виде записывается как\nbsp{}cite:kochin1966theoretical +жидкости. Система уравнений для нее в общем виде записывается +как\nbsp{}cite:kochin1966theoretical \begin{align} & \nabla^2\phi = 0,\nonumber\\ & \phi_t+\frac{1}{2} |\vec{\upsilon}|^2 + g\zeta=-\frac{p}{\rho}, & \text{на }z=\zeta(x,y,t),\label{eq-problem}\\ @@ -450,7 +451,7 @@ Motion Programme (LAMP), программе для моделирования к называют динамическим граничным условием); третье уравнение\nbsp{}--- кинематическое граничное условие, которое сводится к равенству скорости перемещения этой поверхности (\(D\zeta\)) нормальной составляющей скорости жидкости -(\(\nabla\phi\cdot\vec{n}\)). +(\(\nabla\phi\cdot\vec{n}\), см.\nbsp{}разд.\nbsp{}[[#directional-derivative]]). Обратная задача гидродинамики заключается в решении этой системы уравнений относительно \(\phi\). В такой постановке динамическое ГУ становится явной @@ -3503,3 +3504,21 @@ bibliography:bib/refs.bib Здесь \(\epsilon\)\nbsp{}--- белый шум, а \(C_t\) включает в себя значение \(dk\). Подставляя бесконечную сумму вместо интеграла, получаем двухмерную форму ур.\nbsp{}[[eq-longuet-higgins]]. +** Производная в направлении нормали к поверхности +:PROPERTIES: +:CUSTOM_ID: directional-derivative +:END: +Производная от \(\phi\) в направлении вектора \(\vec{n}\) определяется как +\(\nabla_n\phi=\nabla\phi\cdot\frac{\vec{n}}{|\vec{n}|}\). Вектор \(\vec{n}\), +направленный по нормали к поверхности \(z=\zeta(x,y)\) в точке \((x_0,y_0)\) +определяется как +\begin{equation*} + \vec{n} = \begin{bmatrix}\zeta_x(x_0,y_0)\\\zeta_y(x_0,y_0)\\-1\end{bmatrix}. +\end{equation*} +Отсюда производная в направлении нормали к поверхности определяется +\begin{equation*} +\nabla_n \phi = \phi_x \frac{\zeta_x}{\sqrt{\zeta_x^2+\zeta_y^2+1}} + + \phi_y \frac{\zeta_y}{\sqrt{\zeta_x^2+\zeta_y^2+1}} + + \phi_z \frac{-1}{\sqrt{\zeta_x^2+\zeta_y^2+1}}, +\end{equation*} +где производные \(\zeta\) вычисляются в \((x_0,y_0)\). diff --git a/arma-thesis.org b/arma-thesis.org @@ -696,16 +696,18 @@ for it in general case is written as\nbsp{}cite:kochin1966theoretical & \phi_t+\frac{1}{2} |\vec{\upsilon}|^2 + g\zeta=-\frac{p}{\rho}, & \text{на }z=\zeta(x,y,t),\label{eq-problem}\\ & D\zeta = \nabla \phi \cdot \vec{n}, & \text{на }z=\zeta(x,y,t),\nonumber \end{align} -where \(\phi\)\nbsp{}--- velocity potential, \(\zeta\)\nbsp{}--- elevation (\(z\) coordinate) -of wavy surface, \(p\)\nbsp{}--- wave pressure, \(\rho\)\nbsp{}--- fluid density, -\(\vec{\upsilon}=(\phi_x,\phi_y,\phi_z)\)\nbsp{}--- velocity vector, \(g\)\nbsp{}--- -acceleration of gravity, and \(D\)\nbsp{}--- substantial (Lagrange) derivative. The -first equation is called continuity (Laplace) equation, the second one is the -conservation of momentum law (the so called dynamic boundary condition); the -third one is kinematic boundary condition for free wavy surface, which states -that rate of change of wavy surface elevation (\(D\zeta\)) equals to the change of -velocity potential derivative along the wavy surface normal -(\(\nabla\phi\cdot\vec{n}\)). +where \(\phi\)\nbsp{}--- velocity potential, \(\zeta\)\nbsp{}--- elevation +(\(z\) coordinate) of wavy surface, \(p\)\nbsp{}--- wave pressure, +\(\rho\)\nbsp{}--- fluid density, +\(\vec{\upsilon}=(\phi_x,\phi_y,\phi_z)\)\nbsp{}--- velocity vector, +\(g\)\nbsp{}--- acceleration of gravity, and \(D\)\nbsp{}--- substantial +(Lagrange) derivative. The first equation is called continuity (Laplace) +equation, the second one is the conservation of momentum law (the so called +dynamic boundary condition); the third one is kinematic boundary condition for +free wavy surface, which states that rate of change of wavy surface elevation +(\(D\zeta\)) equals to the change of velocity potential derivative along the +wavy surface normal (\(\nabla\phi\cdot\vec{n}\), see +section\nbsp{}[[#directional-derivative]]). Inverse problem of hydrodynamics consists in solving this system of equations for \(\phi\). In this formulation dynamic boundary condition becomes explicit @@ -1921,13 +1923,13 @@ they may (and often) overlap. #+caption: Values of Weibull shape parameter for different wave characteristics. #+attr_latex: :booktabs t | Characteristic | Weibull shape (\(k\)) | -|----------------------+---------------------| -| Wave height | 2 | -| Wave length | 2.3 | -| Crest length | 2.3 | -| Wave period | 3 | -| Wave slope | 2.5 | -| Three-dimensionality | 2.5 | +|----------------------+-----------------------| +| Wave height | 2 | +| Wave length | 2.3 | +| Crest length | 2.3 | +| Wave period | 3 | +| Wave slope | 2.5 | +| Three-dimensionality | 2.5 | Verification was performed for standing and propagating waves. The corresponding ACFs and quantile-quantile plots of wave characteristics distributions are shown @@ -3559,3 +3561,22 @@ Plugging it in the boundary condition yields Here \(\epsilon\) is white noise and \(C_t\) includes \(dk\). Substituting integral with infinite sum yields two-dimensional form of eq.\nbsp{}[[eq-longuet-higgins]]. + +** Derivative in the direction of the surface normal +:PROPERTIES: +:CUSTOM_ID: directional-derivative +:END: +Directional derivative of \(\phi\) in the direction of vector \(\vec{n}\) is +given by \(\nabla_n\phi=\nabla\phi\cdot\frac{\vec{n}}{|\vec{n}|}\). Normal +vector \(\vec{n}\) to the surface \(z=\zeta(x,y)\) at point \((x_0,y_0)\) is +given by +\begin{equation*} + \vec{n} = \begin{bmatrix}\zeta_x(x_0,y_0)\\\zeta_y(x_0,y_0)\\-1\end{bmatrix}. +\end{equation*} +Hence, derivative in the direction of the surface normal is given by +\begin{equation*} +\nabla_n \phi = \phi_x \frac{\zeta_x}{\sqrt{\zeta_x^2+\zeta_y^2+1}} + + \phi_y \frac{\zeta_y}{\sqrt{\zeta_x^2+\zeta_y^2+1}} + + \phi_z \frac{-1}{\sqrt{\zeta_x^2+\zeta_y^2+1}}, +\end{equation*} +where \(\zeta\) derivatives are calculated at \((x_0,y_0)\).