iccsa-20-wind

git clone https://git.igankevich.com/iccsa-20-wind.git
Log | Files | Refs

commit 8744d5d38e8df8e5ac914067bdc3294feb2c81c1
parent c91e6b4e53f1293fbcfa40e52848c2ac30690116
Author: Ivan Gankevich <i.gankevich@spbu.ru>
Date:   Fri, 13 Mar 2020 16:14:32 +0300

update

Diffstat:
main.tex | 6+-----
1 file changed, 1 insertion(+), 5 deletions(-)

diff --git a/main.tex b/main.tex @@ -229,11 +229,7 @@ direction for efficiency, but they do not blow up the solution. We seek solution of the form \begin{equation*} \phi = \vec\upsilon\cdot\vec{r} -+ C \frac{\vec\upsilon_r\cdot\vec{r}}{1+\Length{\vec{r}-\vec{S}}^2}; -\qquad -\vec\upsilon_r = \vec\upsilon - 2\left(\vec\upsilon\cdot\vec{n}\right)\vec{n}; -\qquad -\vec{r}=\left(x,y,z\right), ++ C \frac{\vec\upsilon_r\cdot\vec{r}}{1+\Length{\vec{r}-\vec{S}}^2}, \end{equation*} where \(\Length{\cdot}\) is vector length. Plugging the solution into boundary condition gives the same coefficient \(C=1\), but velocity vector is written differently