arma-thesis

git clone https://git.igankevich.com/arma-thesis.git
Log | Files | Refs | LICENSE

commit f27b84bbdd58e8f7df79cec5200b4b9d4b6f82e7
parent 03a7e444df478d56a19046bb7bf60731014541f2
Author: Ivan Gankevich <igankevich@ya.ru>
Date:   Sun,  9 Apr 2017 14:30:40 +0300

Update three-dimensional velocity potential formulae.

Diffstat:
Makefile | 4++--
arma-thesis-ru.org | 23++++++++++++-----------
arma-thesis.org | 48++++++++++++++++++++++++++++++------------------
preamble.tex | 7+++++--
4 files changed, 49 insertions(+), 33 deletions(-)

diff --git a/Makefile b/Makefile @@ -11,10 +11,10 @@ export TEXINPUTS=$(PWD)//: all: build/$(PHD_RU).pdf build/$(PHD_EN).pdf -build/$(PHD_RU).pdf: $(PHD_RU).tex bib/* +build/$(PHD_RU).pdf: $(PHD_RU).tex preamble.tex bib/* latexmk $(FLAGS) -f $(PHD_RU).tex -build/$(PHD_EN).pdf: $(PHD_EN).tex bib/* +build/$(PHD_EN).pdf: $(PHD_EN).tex preamble.tex bib/* latexmk $(FLAGS) -f $(PHD_EN).tex clean: diff --git a/arma-thesis-ru.org b/arma-thesis-ru.org @@ -1273,13 +1273,14 @@ eqref:eq-solution-2d-full до \FourierY{\phi(x,y,z)}{u,v,w} = 0, \end{equation*} откуда имеем \(w=\pm{i}\sqrt{u^2+v^2}\). Решение уравнения будем искать в виде -обратного преобразования Фурье \(\phi(x,y,z)=\InverseFourierY{E(u,v,w)}{x,y,z}\). -Применяя полученное равенство, получаем +обратного преобразования Фурье +\(\phi(x,y,z)=\InverseFourierY{E(u,v,w)}{x,y,z}\). Подставляя +\(w=i\sqrt{u^2+v^2}=i\Kveclen\) в исходную формулу, получаем \begin{equation*} \phi(x,y,z) = \InverseFourierY{ \left( - C_1 e^{2\pi \sqrt{u^2+v^2} z} - -C_2 e^{-2\pi \sqrt{u^2+v^2} z} + C_1 e^{2\pi \Kveclen z} + -C_2 e^{-2\pi \Kveclen z} \right) E(u,v) }{x,y}. @@ -1289,16 +1290,16 @@ eqref:eq-solution-2d-full до \begin{equation} \label{eq-guessed-sol-3d} \phi(x,y,z) = \InverseFourierY{ - \Sinh{2\pi \sqrt{u^2+v^2} (z+h)} E(u,v) + \Sinh{2\pi \Kveclen (z+h)} E(u,v) }{x,y}. \end{equation} Подставляя выражение для \(\phi\) в граничное условие, получим \begin{equation*} \arraycolsep=1.4pt \begin{array}{rl} - \zeta_t = & i f_1(x,y) \InverseFourierY{2 \pi u \Sinh{2\pi \sqrt{u^2+v^2} (z+h)}E(u,v)}{x,y} \\ - + & i f_2(x,y) \InverseFourierY{2 \pi v \Sinh{2\pi \sqrt{u^2+v^2} (z+h)}E(u,v)}{x,y} \\ - - & \InverseFourierY{2 \pi \sqrt{u^2+v^2} \Sinh{2\pi \sqrt{u^2+v^2} (z+h)}E(u,v)}{x,y} + \zeta_t = & i f_1(x,y) \InverseFourierY{2 \pi u \Sinh{2\pi \Kveclen (z+h)}E(u,v)}{x,y} \\ + + & i f_2(x,y) \InverseFourierY{2 \pi v \Sinh{2\pi \Kveclen (z+h)}E(u,v)}{x,y} \\ + - & \InverseFourierY{2 \pi \sqrt{u^2+v^2} \Sinh{2\pi \Kveclen (z+h)}E(u,v)}{x,y} \end{array} \end{equation*} где \(f_1(x,y)={\zeta_x}/{\SqrtZeta{1+\zeta_x^2+\zeta_y^2}}-\zeta_x\) и @@ -1308,9 +1309,9 @@ eqref:eq-solution-2d-full до \arraycolsep=1.4pt \begin{array}{rl} \FourierY{\zeta_t}{u,v} = & - \FourierY{i f_1(x,y) \InverseFourierY{2 \pi u \Sinh{2\pi \sqrt{u^2+v^2} (z+h)} E(u,v)}{x,y}}{u,v} \\ - + & \FourierY{i f_2(x,y) \InverseFourierY{2 \pi v \Sinh{2\pi \sqrt{u^2+v^2} (z+h)} E(u,v)}{x,y}}{u,v} \\ - - & 2 \pi \sqrt{u^2+v^2} \Sinh{2\pi \sqrt{u^2+v^2} (z+h)} E(u,v) + \FourierY{i f_1(x,y) \InverseFourierY{2 \pi u \Sinh{2\pi \Kveclen (z+h)} E(u,v)}{x,y}}{u,v} \\ + + & \FourierY{i f_2(x,y) \InverseFourierY{2 \pi v \Sinh{2\pi \Kveclen (z+h)} E(u,v)}{x,y}}{u,v} \\ + - & 2 \pi \Kveclen \Sinh{2\pi \Kveclen (z+h)} E(u,v) \end{array} \end{equation*} Окончательное решение получается при подстановке выражения для \(E(u,v)\) diff --git a/arma-thesis.org b/arma-thesis.org @@ -1504,12 +1504,12 @@ of Laplace equation yields \end{equation*} hence \(w=\pm{i}\sqrt{u^2+v^2}\). We seek solution in the form of inverse Fourier transform \(\phi(x,y,z)=\InverseFourierY{E(u,v,w)}{x,y,z}\). Plugging -\(w=i\sqrt{u^2+v^2}\) into the formula yields +\(w=i\sqrt{u^2+v^2}=i\Kveclen\) into the formula yields \begin{equation*} \phi(x,y,z) = \InverseFourierY{ \left( - C_1 e^{2\pi \sqrt{u^2+v^2} z} - -C_2 e^{-2\pi \sqrt{u^2+v^2} z} + C_1 e^{2\pi \Kveclen z} + -C_2 e^{-2\pi \Kveclen z} \right) E(u,v) }{x,y}. @@ -1519,32 +1519,44 @@ two-dimensional case) yields \begin{equation} \label{eq-guessed-sol-3d} \phi(x,y,z) = \InverseFourierY{ - \Sinh{2\pi \sqrt{u^2+v^2} (z+h)} E(u,v) + \Sinh{2\pi \Kveclen (z+h)} E(u,v) }{x,y}. \end{equation} Plugging \(\phi\) into the boundary condition on the free surface yields \begin{equation*} \arraycolsep=1.4pt \begin{array}{rl} - \zeta_t = & i f_1(x,y) \InverseFourierY{2 \pi u \Sinh{2\pi \sqrt{u^2+v^2} (z+h)}E(u,v)}{x,y} \\ - + & i f_2(x,y) \InverseFourierY{2 \pi v \Sinh{2\pi \sqrt{u^2+v^2} (z+h)}E(u,v)}{x,y} \\ - - & \InverseFourierY{2 \pi \sqrt{u^2+v^2} \SinhX{2\pi \sqrt{u^2+v^2} (z+h)}E(u,v)}{x,y} + \zeta_t = & i f_1(x,y) \InverseFourierY{2 \pi u \Sinh{2\pi \Kveclen (z+h)}E(u,v)}{x,y} \\ + + & i f_2(x,y) \InverseFourierY{2 \pi v \Sinh{2\pi \Kveclen (z+h)}E(u,v)}{x,y} \\ + - & \InverseFourierY{2 \pi \Kveclen \SinhX{2\pi \Kveclen (z+h)}E(u,v)}{x,y} \end{array} \end{equation*} where \(f_1(x,y)={\zeta_x}/{\SqrtZeta{1+\zeta_x^2+\zeta_y^2}}-\zeta_x\) and -\(f_2(x,y)={\zeta_y}/{\SqrtZeta{1+\zeta_x^2+\zeta_y^2}}-\zeta_y\). Applying -Fourier transform to both sides of the equation yields formula for coefficients -\(E\): +\(f_2(x,y)={\zeta_y}/{\SqrtZeta{1+\zeta_x^2+\zeta_y^2}}-\zeta_y\). + +Like in Section\nbsp{}[[#sec:pressure-2d]] we assume that +\(\Sinh{2\pi{u}(z+h)}\approx\SinhX{2\pi{u}(z+h)}\) near free surface, but in +three-dimensional case this is not enough to solve the problem. In order to get +analytic formula for coefficients \(E\) we need to assume, that all Fourier +transforms in the equation have radially symmetric kernels, i.e. replace \(u\) +and \(v\) with \(\Kveclen\). There are two points supporting this assumption. +First, in numerical implementation integration is done over positive wave +numbers, so the sign of \(u\) and \(v\) does not affect the result. Second, the +growth of \(\cosh\) term of the integral kernel is much higher than the growth +of \(u\) or \(\Kveclen\), so the substitution has small effect on the magnitude +of the solution. Despite these two points, a use of more mathematically rigorous +approach would be preferable. + +Then applying Fourier transform to both sides of the equation and plugging the +result into eqref:eq-guessed-sol-3d yields formula for \(\phi\): \begin{equation*} - \arraycolsep=1.4pt - \begin{array}{rl} - \FourierY{\zeta_t}{u,v} = & - \FourierY{i f_1(x,y) \InverseFourierY{2 \pi u \Sinh{2\pi \sqrt{u^2+v^2} (z+h)} E(u,v)}{x,y}}{u,v} \\ - + & \FourierY{i f_2(x,y) \InverseFourierY{2 \pi v \Sinh{2\pi \sqrt{u^2+v^2} (z+h)} E(u,v)}{x,y}}{u,v} \\ - - & 2 \pi \sqrt{u^2+v^2} \SinhX{2\pi \sqrt{u^2+v^2} (z+h)} E(u,v) - \end{array} + \phi(x,y,z,t) = \InverseFourierY{ + \frac{ \Sinh{\smash{2\pi \Kveclen (z+h)}} }{ 2\pi\Kveclen } + \frac{ \FourierY{ \zeta_t / \left( i f_1(x,y) + i f_2(x,y) - 1 \right)}{u,v} } + { \FourierY{\mathcal{D}_3\left( x,y,\zeta\left(x,y\right) \right)}{u,v} } + }{x,y}, \end{equation*} -Final solution is obtained after plugging \(E(u,v)\) into eqref:eq-guessed-sol-3d. +where \(\FourierY{\mathcal{D}_3\left(x,y,z\right)}{u,v}=\Sinh{\smash{2\pi\Kveclen{}z}}\). * Numerical methods and experimental results ** The shape of ACF for different types of waves diff --git a/preamble.tex b/preamble.tex @@ -57,4 +57,8 @@ \newcommand{\InverseFourierX}[3]{\mathcal{F}^{-1}_{#2}\!\left\{#1\right\}\!\left(#3\right)} % properly aligned version of sqrt for \zeta_y^2 -\newcommand{\SqrtZeta}[1]{\sqrt{\vphantom{\zeta_x^2}\smash[b]{#1}}}- \ No newline at end of file +\newcommand{\SqrtZeta}[1]{\sqrt{\vphantom{\zeta_x^2}\smash[b]{#1}}} + +% wave vector +\newcommand{\Kvec}{\vec{k}} +\newcommand{\Kveclen}{\lvert\smash[b]{\Kvec}\rvert}