arma-thesis

git clone https://git.igankevich.com/arma-thesis.git
Log | Files | Refs | LICENSE

commit d5f4f99678fbe1b59b8b8100bd6727aeee08dcf6
parent 109733e2510ade55da298025c4ea1b560ea3a437
Author: Ivan Gankevich <igankevich@ya.ru>
Date:   Wed, 22 Feb 2017 21:02:00 +0300

Add LH model derivation.

Diffstat:
phd-diss-ru.org | 33++++++++++++++++++++++++++++++---
phd-diss.org | 35+++++++++++++++++++++++++++++++----
2 files changed, 61 insertions(+), 7 deletions(-)

diff --git a/phd-diss-ru.org b/phd-diss-ru.org @@ -468,8 +468,10 @@ Motion Programme (LAMP), программе для моделирования к *** Модель Лонге---Хиггинса Наиболее простой моделью, формула которой выводится в рамках линейной теории -волн, является модель Лонге---Хиггинса (ЛХ)\nbsp{}cite:longuet1957statistical. -Подробный сравнительный анализ этой модели и модели АРСС проведен в работах\nbsp{}cite:degtyarev2011modelling,boukhanovsky1997thesis. +волн (см.\nbsp{}разд.\nbsp{}[[#longuet-higgins-derivation]]), является модель +Лонге---Хиггинса (ЛХ)\nbsp{}cite:longuet1957statistical. Подробный сравнительный +анализ этой модели и модели АРСС проведен в +работах\nbsp{}cite:degtyarev2011modelling,boukhanovsky1997thesis. Модель ЛХ представляет взволнованную морскую поверхность в виде суперпозиции элементарных гармонических волн случайных амплитуд \(c_n\) и фаз \(\epsilon_n\), @@ -3192,4 +3194,29 @@ bibliographystyle:ugost2008 bibliography:bib/refs.bib * Приложение -** TODO Вывод формулы модели Лонге---Хиггинса +** Вывод формулы модели Лонге---Хиггинса +:PROPERTIES: +:CUSTOM_ID: longuet-higgins-derivation +:END: + +Двухмерная система уравнений\nbsp{}eqref:eq:problem в рамках линейной теории +волн записывается как +\begin{align*} + & \phi_{xx} + \phi_{zz} = 0,\\ + & \zeta(x,t) = -\frac{1}{g} \phi_t, & \text{на }z=\zeta(x,t), +\end{align*} +где \(\frac{p}{\rho}\) включено в \(\phi_t\). Решение уравнения Лапласа ищется в +виде ряда Фурье cite:kochin1966theoretical: +\begin{equation*} + \phi(x,z,t) = \int\limits_{0}^{\infty} e^{k z} + \left[ A(k, t) \cos(k x) + B(k, t) \sin(k x) \right] dk. +\end{equation*} +Подставляя его в граничное условие, получаем +\begin{align*} + \zeta(x,t) &= -\frac{1}{g} \int\limits_{0}^{\infty} + \left[ A_t(k, t) \cos(k x) + B_t(k, t) \sin(k x) \right] dk \\ + &= -\frac{1}{g} \int\limits_{0}^{\infty} C_t(k, t) \cos(kx + \eps(k, t)). +\end{align*} +Здесь \(\eps\)\nbsp{}--- белый шум, а \(C_t\) включает в себя значение \(dk\). +Подставляя бесконечную сумму вместо интеграла, получаем двухмерную форму +ур.\nbsp{}[[eq:longuet-higgins]]. diff --git a/phd-diss.org b/phd-diss.org @@ -444,8 +444,10 @@ generation, instead of wavy surface generation. *** Longuet---Higgins model The simplest model, formula of which is derived in the framework of linear wave -theory, is Longuet---Higgins (LH) model\nbsp{}cite:longuet1957statistical. In-depth -comparative analysis of this model and ARMA model is done in\nbsp{}cite:degtyarev2011modelling,boukhanovsky1997thesis. +theory (see\nbsp{}section\nbsp{}[[#longuet-higgins-derivation]]), is +Longuet---Higgins (LH) model\nbsp{}cite:longuet1957statistical. In-depth +comparative analysis of this model and ARMA model is done +in\nbsp{}cite:degtyarev2011modelling,boukhanovsky1997thesis. LH model represents ocean wavy surface as a superposition of sine waves with random amplitudes \(c_n\) and phases \(\epsilon_n\), continuously @@ -1910,8 +1912,8 @@ it transparently to a programmer. The implementation is divided into two layers: the lower layer consists of routines and classes for single node applications (with no network interactions), and the upper layer for applications that run on an arbitrary number of nodes. There are two kinds of tightly coupled entities in -the model\nbsp{}--- /control flow objects/ (or /kernels/) and /pipelines/\nbsp{}--- which -are used together to compose a programme. +the model\nbsp{}--- /control flow objects/ (or /kernels/) and +/pipelines/\nbsp{}--- which are used together to compose a programme. Kernels implement control flow logic in theirs ~act~ and ~react~ methods and store the state of the current control flow branch. Both logic and state are @@ -2983,3 +2985,28 @@ bibliographystyle:ugost2008 bibliography:bib/refs.bib * Appendix +** Longuet---Higgins model formula derivation +:PROPERTIES: +:CUSTOM_ID: longuet-higgins-derivation +:END: + +In the framework of linear wave theory two-dimensional system of +equations\nbsp{}eqref:eq:problem is written as +\begin{align*} + & \phi_{xx} + \phi_{zz} = 0,\\ + & \zeta(x,t) = -\frac{1}{g} \phi_t, & \text{на }z=\zeta(x,t), +\end{align*} +where \(\frac{p}{\rho}\) includes \(\phi_t\). The solution to the Laplace +equation is sought in a form of Fourier series cite:kochin1966theoretical: +\begin{equation*} + \phi(x,z,t) = \int\limits_{0}^{\infty} e^{k z} + \left[ A(k, t) \cos(k x) + B(k, t) \sin(k x) \right] dk. +\end{equation*} +Plugging it in the boundary condition yields +\begin{align*} + \zeta(x,t) &= -\frac{1}{g} \int\limits_{0}^{\infty} + \left[ A_t(k, t) \cos(k x) + B_t(k, t) \sin(k x) \right] dk \\ + &= -\frac{1}{g} \int\limits_{0}^{\infty} C_t(k, t) \cos(kx + \eps(k, t)). +\end{align*} +Here \(\eps\) is white noise and \(C_t\) includes \(dk\). Substituting integral +with infinite sum yields two-dimensional form of eq.\nbsp{}[[eq:longuet-higgins]].