arma-thesis

git clone https://git.igankevich.com/arma-thesis.git
Log | Files | Refs | LICENSE

commit 39d17aa6a15a95301edfa1fd31fd7047cc037673
parent 5af5d43ff5ef45bc60bc896a69f4087a9a77ebee
Author: Ivan Gankevich <igankevich@ya.ru>
Date:   Wed,  1 Mar 2017 11:43:37 +0300

Correct typos in three-dimensional formulae.

Diffstat:
arma-thesis-ru.org | 13++++++-------
arma-thesis.org | 14+++++++-------
preamble.tex | 4++++
3 files changed, 17 insertions(+), 14 deletions(-)

diff --git a/arma-thesis-ru.org b/arma-thesis-ru.org @@ -1259,11 +1259,11 @@ eqref:eq-solution-2d-full до В трех измерениях исходная система уравнений eqref:eq-problem переписывается как \begin{align} \label{eq-problem-3d} - & \phi_xx + \phi_yy + \phi_zz = 0,\\ + & \phi_{xx} + \phi_{yy} + \phi_{zz} = 0,\\ & \zeta_t + \zeta_x\phi_x + \zeta_y\phi_y = - \frac{\zeta_x}{\sqrt{1 + \zeta_x^2}} \phi_x - +\frac{\zeta_y}{\sqrt{\vphantom{\zeta_x^2}\smash[b]{1 + \zeta_y^2}}} \phi_y + \frac{\zeta_x}{\SqrtZeta{1 + \zeta_x^2 + \zeta_y^2}} \phi_x + +\frac{\zeta_y}{\SqrtZeta{1 + \zeta_x^2 + \zeta_y^2}} \phi_y - \phi_z, & \text{на }z=\zeta(x,y,t).\nonumber \end{align} Для ее решения также воспользуемся методом Фурье. Возьмем преобразование Фурье @@ -1301,10 +1301,9 @@ eqref:eq-solution-2d-full до - & \InverseFourierY{2 \pi \sqrt{u^2+v^2} \Sinh{2\pi \sqrt{u^2+v^2} (z+h)}E(u,v)}{x,y} \end{array} \end{equation*} -где \(f_1(x,y)={\zeta_x}/{\sqrt{1+\zeta_x^2}}-\zeta_x\) и -\(f_2(x,y)={\zeta_y}/{\sqrt{\vphantom{\zeta_x^2}\smash[b]{1+\zeta_y^2}}}-\zeta_y\). -Применяя преобразование Фурье к обеим частям, получаем выражение для -коэффициентов \(E\): +где \(f_1(x,y)={\zeta_x}/{\SqrtZeta{1+\zeta_x^2+\zeta_y^2}}-\zeta_x\) и +\(f_2(x,y)={\zeta_y}/{\SqrtZeta{1+\zeta_x^2+\zeta_y^2}}-\zeta_y\). Применяя +преобразование Фурье к обеим частям, получаем выражение для коэффициентов \(E\): \begin{equation*} \arraycolsep=1.4pt \begin{array}{rl} diff --git a/arma-thesis.org b/arma-thesis.org @@ -1221,11 +1221,11 @@ theory formulae is made under the same assumptions. Three-dimensional version of eqref:eq-problem is written as \begin{align} \label{eq-problem-3d} - & \phi_xx + \phi_yy + \phi_zz = 0,\\ + & \phi_{xx} + \phi_{yy} + \phi_{zz} = 0,\\ & \zeta_t + \zeta_x\phi_x + \zeta_y\phi_y = - \frac{\zeta_x}{\sqrt{1 + \zeta_x^2}} \phi_x - +\frac{\zeta_y}{\sqrt{\vphantom{\zeta_x^2}\smash[b]{1 + \zeta_y^2}}} \phi_y + \frac{\zeta_x}{\SqrtZeta{1 + \zeta_x^2 + \zeta_y^2}} \phi_x + +\frac{\zeta_y}{\SqrtZeta{1 + \zeta_x^2 + \zeta_y^2}} \phi_y - \phi_z, & \text{на }z=\zeta(x,y,t).\nonumber \end{align} Again, use Fourier method to solve it. Applying Fourier transform to both sides @@ -1263,10 +1263,10 @@ Plugging \(\phi\) into the boundary condition on the free surface yields - & \InverseFourierY{2 \pi \sqrt{u^2+v^2} \SinhX{2\pi \sqrt{u^2+v^2} (z+h)}E(u,v)}{x,y} \end{array} \end{equation*} -where \(f_1(x,y)={\zeta_x}/{\sqrt{1+\zeta_x^2}}-\zeta_x\) and -\(f_2(x,y)={\zeta_y}/{\sqrt{\vphantom{\zeta_x^2}\smash[b]{1+\zeta_y^2}}}-\zeta_y\). -Applying Fourier transform to both sides of the equation yields formula for -coefficients \(E\): +where \(f_1(x,y)={\zeta_x}/{\SqrtZeta{1+\zeta_x^2+\zeta_y^2}}-\zeta_x\) and +\(f_2(x,y)={\zeta_y}/{\SqrtZeta{1+\zeta_x^2+\zeta_y^2}}-\zeta_y\). Applying +Fourier transform to both sides of the equation yields formula for coefficients +\(E\): \begin{equation*} \arraycolsep=1.4pt \begin{array}{rl} diff --git a/preamble.tex b/preamble.tex @@ -55,3 +55,6 @@ \newcommand{\FourierX}[3]{\mathcal{F}_{#2}\!\left\{#1\right\}\!\left(#3\right)} \newcommand{\InverseFourierX}[3]{\mathcal{F}^{-1}_{#2}\!\left\{#1\right\}\!\left(#3\right)} + +% properly aligned version of sqrt for \zeta_y^2 +\newcommand{\SqrtZeta}[1]{\sqrt{\vphantom{\zeta_x^2}\smash[b]{#1}}}+ \ No newline at end of file