wind.mathics (574B)
1 (* 2 Print[Solve[{ux^2==a1 fx, 3 uy^2==a2 fy, 4 uz^2==a3 fz},{ux,uy,uz}]] 5 Print[D[x^(c-1) Exp[-x^c], x] // Simplify] 6 Print[Integrate[x^(c-1) Exp[-x^c], x] // Simplify] 7 *) 8 9 10 weibullExp = -(x/\[Lambda])^c; 11 weibullPDF = (c/\[Lambda]) (x/\[Lambda])^(c-1) Exp[-(x/\[Lambda])^c]; 12 weibullMode = \[Lambda] ((c-1)/c)^(1/c); 13 Print[(weibullExp /. {x -> Abs[x-weibullMode]} /. {\[Lambda] -> 1/b}) // Simplify] ; 14 Print[(weibullPDF /. {x -> Abs[x-weibullMode]} /. {\[Lambda] -> 1/b}) // Simplify] ; 15 func[c_] := ((-1 + c) / c) ^ (1 / c); 16 Print[func[{1, 2, 3}] // N] 17 18 19