iccsa-17-ascheduler

Distributed Data Processing on Microcomputers with Ascheduler and Apache Spark
git clone https://git.igankevich.com/iccsa-17-ascheduler.git
Log | Files | Refs

llncs.dem (35361B)


      1 % This is LLNCS.DEM the demonstration file of
      2 % the LaTeX macro package from Springer-Verlag
      3 % for Lecture Notes in Computer Science,
      4 % version 2.4 for LaTeX2e as of 16. April 2010
      5 %
      6 \documentclass{llncs}
      7 %
      8 \usepackage{makeidx}  % allows for indexgeneration
      9 %
     10 \begin{document}
     11 %
     12 \frontmatter          % for the preliminaries
     13 %
     14 \pagestyle{headings}  % switches on printing of running heads
     15 \addtocmark{Hamiltonian Mechanics} % additional mark in the TOC
     16 %
     17 \chapter*{Preface}
     18 %
     19 This textbook is intended for use by students of physics, physical
     20 chemistry, and theoretical chemistry. The reader is presumed to have a
     21 basic knowledge of atomic and quantum physics at the level provided, for
     22 example, by the first few chapters in our book {\it The Physics of Atoms
     23 and Quanta}. The student of physics will find here material which should
     24 be included in the basic education of every physicist. This book should
     25 furthermore allow students to acquire an appreciation of the breadth and
     26 variety within the field of molecular physics and its future as a
     27 fascinating area of research.
     28 
     29 For the student of chemistry, the concepts introduced in this book will
     30 provide a theoretical framework for that entire field of study. With the
     31 help of these concepts, it is at least in principle possible to reduce
     32 the enormous body of empirical chemical knowledge to a few basic
     33 principles: those of quantum mechanics. In addition, modern physical
     34 methods whose fundamentals are introduced here are becoming increasingly
     35 important in chemistry and now represent indispensable tools for the
     36 chemist. As examples, we might mention the structural analysis of
     37 complex organic compounds, spectroscopic investigation of very rapid
     38 reaction processes or, as a practical application, the remote detection
     39 of pollutants in the air.
     40 
     41 \vspace{1cm}
     42 \begin{flushright}\noindent
     43 April 1995\hfill Walter Olthoff\\
     44 Program Chair\\
     45 ECOOP'95
     46 \end{flushright}
     47 %
     48 \chapter*{Organization}
     49 ECOOP'95 is organized by the department of Computer Science, Univeristy
     50 of \AA rhus and AITO (association Internationa pour les Technologie
     51 Object) in cooperation with ACM/SIGPLAN.
     52 %
     53 \section*{Executive Commitee}
     54 \begin{tabular}{@{}p{5cm}@{}p{7.2cm}@{}}
     55 Conference Chair:&Ole Lehrmann Madsen (\AA rhus University, DK)\\
     56 Program Chair:   &Walter Olthoff (DFKI GmbH, Germany)\\
     57 Organizing Chair:&J\o rgen Lindskov Knudsen (\AA rhus University, DK)\\
     58 Tutorials:&Birger M\o ller-Pedersen\hfil\break
     59 (Norwegian Computing Center, Norway)\\
     60 Workshops:&Eric Jul (University of Kopenhagen, Denmark)\\
     61 Panels:&Boris Magnusson (Lund University, Sweden)\\
     62 Exhibition:&Elmer Sandvad (\AA rhus University, DK)\\
     63 Demonstrations:&Kurt N\o rdmark (\AA rhus University, DK)
     64 \end{tabular}
     65 %
     66 \section*{Program Commitee}
     67 \begin{tabular}{@{}p{5cm}@{}p{7.2cm}@{}}
     68 Conference Chair:&Ole Lehrmann Madsen (\AA rhus University, DK)\\
     69 Program Chair:   &Walter Olthoff (DFKI GmbH, Germany)\\
     70 Organizing Chair:&J\o rgen Lindskov Knudsen (\AA rhus University, DK)\\
     71 Tutorials:&Birger M\o ller-Pedersen\hfil\break
     72 (Norwegian Computing Center, Norway)\\
     73 Workshops:&Eric Jul (University of Kopenhagen, Denmark)\\
     74 Panels:&Boris Magnusson (Lund University, Sweden)\\
     75 Exhibition:&Elmer Sandvad (\AA rhus University, DK)\\
     76 Demonstrations:&Kurt N\o rdmark (\AA rhus University, DK)
     77 \end{tabular}
     78 %
     79 \begin{multicols}{3}[\section*{Referees}]
     80 V.~Andreev\\
     81 B\"arwolff\\
     82 E.~Barrelet\\
     83 H.P.~Beck\\
     84 G.~Bernardi\\
     85 E.~Binder\\
     86 P.C.~Bosetti\\
     87 Braunschweig\\
     88 F.W.~B\"usser\\
     89 T.~Carli\\
     90 A.B.~Clegg\\
     91 G.~Cozzika\\
     92 S.~Dagoret\\
     93 Del~Buono\\
     94 P.~Dingus\\
     95 H.~Duhm\\
     96 J.~Ebert\\
     97 S.~Eichenberger\\
     98 R.J.~Ellison\\
     99 Feltesse\\
    100 W.~Flauger\\
    101 A.~Fomenko\\
    102 G.~Franke\\
    103 J.~Garvey\\
    104 M.~Gennis\\
    105 L.~Goerlich\\
    106 P.~Goritchev\\
    107 H.~Greif\\
    108 E.M.~Hanlon\\
    109 R.~Haydar\\
    110 R.C.W.~Henderso\\
    111 P.~Hill\\
    112 H.~Hufnagel\\
    113 A.~Jacholkowska\\
    114 Johannsen\\
    115 S.~Kasarian\\
    116 I.R.~Kenyon\\
    117 C.~Kleinwort\\
    118 T.~K\"ohler\\
    119 S.D.~Kolya\\
    120 P.~Kostka\\
    121 U.~Kr\"uger\\
    122 J.~Kurzh\"ofer\\
    123 M.P.J.~Landon\\
    124 A.~Lebedev\\
    125 Ch.~Ley\\
    126 F.~Linsel\\
    127 H.~Lohmand\\
    128 Martin\\
    129 S.~Masson\\
    130 K.~Meier\\
    131 C.A.~Meyer\\
    132 S.~Mikocki\\
    133 J.V.~Morris\\
    134 B.~Naroska\\
    135 Nguyen\\
    136 U.~Obrock\\
    137 G.D.~Patel\\
    138 Ch.~Pichler\\
    139 S.~Prell\\
    140 F.~Raupach\\
    141 V.~Riech\\
    142 P.~Robmann\\
    143 N.~Sahlmann\\
    144 P.~Schleper\\
    145 Sch\"oning\\
    146 B.~Schwab\\
    147 A.~Semenov\\
    148 G.~Siegmon\\
    149 J.R.~Smith\\
    150 M.~Steenbock\\
    151 U.~Straumann\\
    152 C.~Thiebaux\\
    153 P.~Van~Esch\\
    154 from Yerevan Ph\\
    155 L.R.~West\\
    156 G.-G.~Winter\\
    157 T.P.~Yiou\\
    158 M.~Zimmer\end{multicols}
    159 %
    160 \section*{Sponsoring Institutions}
    161 %
    162 Bernauer-Budiman Inc., Reading, Mass.\\
    163 The Hofmann-International Company, San Louis Obispo, Cal.\\
    164 Kramer Industries, Heidelberg, Germany
    165 %
    166 \tableofcontents
    167 %
    168 \mainmatter              % start of the contributions
    169 %
    170 \title{Hamiltonian Mechanics unter besonderer Ber\"ucksichtigung der
    171 h\"ohreren Lehranstalten}
    172 %
    173 \titlerunning{Hamiltonian Mechanics}  % abbreviated title (for running head)
    174 %                                     also used for the TOC unless
    175 %                                     \toctitle is used
    176 %
    177 \author{Ivar Ekeland\inst{1} \and Roger Temam\inst{2}
    178 Jeffrey Dean \and David Grove \and Craig Chambers \and Kim~B.~Bruce \and
    179 Elsa Bertino}
    180 %
    181 \authorrunning{Ivar Ekeland et al.} % abbreviated author list (for running head)
    182 %
    183 %%%% list of authors for the TOC (use if author list has to be modified)
    184 \tocauthor{Ivar Ekeland, Roger Temam, Jeffrey Dean, David Grove,
    185 Craig Chambers, Kim B. Bruce, and Elisa Bertino}
    186 %
    187 \institute{Princeton University, Princeton NJ 08544, USA,\\
    188 \email{I.Ekeland@princeton.edu},\\ WWW home page:
    189 \texttt{http://users/\homedir iekeland/web/welcome.html}
    190 \and
    191 Universit\'{e} de Paris-Sud,
    192 Laboratoire d'Analyse Num\'{e}rique, B\^{a}timent 425,\\
    193 F-91405 Orsay Cedex, France}
    194 
    195 \maketitle              % typeset the title of the contribution
    196 
    197 \begin{abstract}
    198 The abstract should summarize the contents of the paper
    199 using at least 70 and at most 150 words. It will be set in 9-point
    200 font size and be inset 1.0 cm from the right and left margins.
    201 There will be two blank lines before and after the Abstract. \dots
    202 \keywords{computational geometry, graph theory, Hamilton cycles}
    203 \end{abstract}
    204 %
    205 \section{Fixed-Period Problems: The Sublinear Case}
    206 %
    207 With this chapter, the preliminaries are over, and we begin the search
    208 for periodic solutions to Hamiltonian systems. All this will be done in
    209 the convex case; that is, we shall study the boundary-value problem
    210 \begin{eqnarray*}
    211   \dot{x}&=&JH' (t,x)\\
    212   x(0) &=& x(T)
    213 \end{eqnarray*}
    214 with $H(t,\cdot)$ a convex function of $x$, going to $+\infty$ when
    215 $\left\|x\right\| \to \infty$.
    216 
    217 %
    218 \subsection{Autonomous Systems}
    219 %
    220 In this section, we will consider the case when the Hamiltonian $H(x)$
    221 is autonomous. For the sake of simplicity, we shall also assume that it
    222 is $C^{1}$.
    223 
    224 We shall first consider the question of nontriviality, within the
    225 general framework of
    226 $\left(A_{\infty},B_{\infty}\right)$-subquadratic Hamiltonians. In
    227 the second subsection, we shall look into the special case when $H$ is
    228 $\left(0,b_{\infty}\right)$-subquadratic,
    229 and we shall try to derive additional information.
    230 %
    231 \subsubsection{The General Case: Nontriviality.}
    232 %
    233 We assume that $H$ is
    234 $\left(A_{\infty},B_{\infty}\right)$-sub\-qua\-dra\-tic at infinity,
    235 for some constant symmetric matrices $A_{\infty}$ and $B_{\infty}$,
    236 with $B_{\infty}-A_{\infty}$ positive definite. Set:
    237 \begin{eqnarray}
    238 \gamma :&=&{\rm smallest\ eigenvalue\ of}\ \ B_{\infty} - A_{\infty} \\
    239   \lambda : &=& {\rm largest\ negative\ eigenvalue\ of}\ \
    240   J \frac{d}{dt} +A_{\infty}\ .
    241 \end{eqnarray}
    242 
    243 Theorem~\ref{ghou:pre} tells us that if $\lambda +\gamma < 0$, the
    244 boundary-value problem:
    245 \begin{equation}
    246 \begin{array}{rcl}
    247   \dot{x}&=&JH' (x)\\
    248   x(0)&=&x (T)
    249 \end{array}
    250 \end{equation}
    251 has at least one solution
    252 $\overline{x}$, which is found by minimizing the dual
    253 action functional:
    254 \begin{equation}
    255   \psi (u) = \int_{o}^{T} \left[\frac{1}{2}
    256   \left(\Lambda_{o}^{-1} u,u\right) + N^{\ast} (-u)\right] dt
    257 \end{equation}
    258 on the range of $\Lambda$, which is a subspace $R (\Lambda)_{L}^{2}$
    259 with finite codimension. Here
    260 \begin{equation}
    261   N(x) := H(x) - \frac{1}{2} \left(A_{\infty} x,x\right)
    262 \end{equation}
    263 is a convex function, and
    264 \begin{equation}
    265   N(x) \le \frac{1}{2}
    266   \left(\left(B_{\infty} - A_{\infty}\right) x,x\right)
    267   + c\ \ \ \forall x\ .
    268 \end{equation}
    269 
    270 %
    271 \begin{proposition}
    272 Assume $H'(0)=0$ and $ H(0)=0$. Set:
    273 \begin{equation}
    274   \delta := \liminf_{x\to 0} 2 N (x) \left\|x\right\|^{-2}\ .
    275   \label{eq:one}
    276 \end{equation}
    277 
    278 If $\gamma < - \lambda < \delta$,
    279 the solution $\overline{u}$ is non-zero:
    280 \begin{equation}
    281   \overline{x} (t) \ne 0\ \ \ \forall t\ .
    282 \end{equation}
    283 \end{proposition}
    284 %
    285 \begin{proof}
    286 Condition (\ref{eq:one}) means that, for every
    287 $\delta ' > \delta$, there is some $\varepsilon > 0$ such that
    288 \begin{equation}
    289   \left\|x\right\| \le \varepsilon \Rightarrow N (x) \le
    290   \frac{\delta '}{2} \left\|x\right\|^{2}\ .
    291 \end{equation}
    292 
    293 It is an exercise in convex analysis, into which we shall not go, to
    294 show that this implies that there is an $\eta > 0$ such that
    295 \begin{equation}
    296   f\left\|x\right\| \le \eta
    297   \Rightarrow N^{\ast} (y) \le \frac{1}{2\delta '}
    298   \left\|y\right\|^{2}\ .
    299   \label{eq:two}
    300 \end{equation}
    301 
    302 \begin{figure}
    303 \vspace{2.5cm}
    304 \caption{This is the caption of the figure displaying a white eagle and
    305 a white horse on a snow field}
    306 \end{figure}
    307 
    308 Since $u_{1}$ is a smooth function, we will have
    309 $\left\|hu_{1}\right\|_\infty \le \eta$
    310 for $h$ small enough, and inequality (\ref{eq:two}) will hold,
    311 yielding thereby:
    312 \begin{equation}
    313   \psi (hu_{1}) \le \frac{h^{2}}{2}
    314   \frac{1}{\lambda} \left\|u_{1} \right\|_{2}^{2} + \frac{h^{2}}{2}
    315   \frac{1}{\delta '} \left\|u_{1}\right\|^{2}\ .
    316 \end{equation}
    317 
    318 If we choose $\delta '$ close enough to $\delta$, the quantity
    319 $\left(\frac{1}{\lambda} + \frac{1}{\delta '}\right)$
    320 will be negative, and we end up with
    321 \begin{equation}
    322   \psi (hu_{1}) < 0\ \ \ \ \ {\rm for}\ \ h\ne 0\ \ {\rm small}\ .
    323 \end{equation}
    324 
    325 On the other hand, we check directly that $\psi (0) = 0$. This shows
    326 that 0 cannot be a minimizer of $\psi$, not even a local one.
    327 So $\overline{u} \ne 0$ and
    328 $\overline{u} \ne \Lambda_{o}^{-1} (0) = 0$. \qed
    329 \end{proof}
    330 %
    331 \begin{corollary}
    332 Assume $H$ is $C^{2}$ and
    333 $\left(a_{\infty},b_{\infty}\right)$-subquadratic at infinity. Let
    334 $\xi_{1},\allowbreak\dots,\allowbreak\xi_{N}$  be the
    335 equilibria, that is, the solutions of $H' (\xi ) = 0$.
    336 Denote by $\omega_{k}$
    337 the smallest eigenvalue of $H'' \left(\xi_{k}\right)$, and set:
    338 \begin{equation}
    339   \omega : = {\rm Min\,} \left\{\omega_{1},\dots,\omega_{k}\right\}\ .
    340 \end{equation}
    341 If:
    342 \begin{equation}
    343   \frac{T}{2\pi} b_{\infty} <
    344   - E \left[- \frac{T}{2\pi}a_{\infty}\right] <
    345   \frac{T}{2\pi}\omega
    346   \label{eq:three}
    347 \end{equation}
    348 then minimization of $\psi$ yields a non-constant $T$-periodic solution
    349 $\overline{x}$.
    350 \end{corollary}
    351 %
    352 
    353 We recall once more that by the integer part $E [\alpha ]$ of
    354 $\alpha \in \bbbr$, we mean the $a\in \bbbz$
    355 such that $a< \alpha \le a+1$. For instance,
    356 if we take $a_{\infty} = 0$, Corollary 2 tells
    357 us that $\overline{x}$ exists and is
    358 non-constant provided that:
    359 
    360 \begin{equation}
    361   \frac{T}{2\pi} b_{\infty} < 1 < \frac{T}{2\pi}
    362 \end{equation}
    363 or
    364 \begin{equation}
    365   T\in \left(\frac{2\pi}{\omega},\frac{2\pi}{b_{\infty}}\right)\ .
    366   \label{eq:four}
    367 \end{equation}
    368 
    369 %
    370 \begin{proof}
    371 The spectrum of $\Lambda$ is $\frac{2\pi}{T} \bbbz +a_{\infty}$. The
    372 largest negative eigenvalue $\lambda$ is given by
    373 $\frac{2\pi}{T}k_{o} +a_{\infty}$,
    374 where
    375 \begin{equation}
    376   \frac{2\pi}{T}k_{o} + a_{\infty} < 0
    377   \le \frac{2\pi}{T} (k_{o} +1) + a_{\infty}\ .
    378 \end{equation}
    379 Hence:
    380 \begin{equation}
    381   k_{o} = E \left[- \frac{T}{2\pi} a_{\infty}\right] \ .
    382 \end{equation}
    383 
    384 The condition $\gamma < -\lambda < \delta$ now becomes:
    385 \begin{equation}
    386   b_{\infty} - a_{\infty} <
    387   - \frac{2\pi}{T} k_{o} -a_{\infty} < \omega -a_{\infty}
    388 \end{equation}
    389 which is precisely condition (\ref{eq:three}).\qed
    390 \end{proof}
    391 %
    392 
    393 \begin{lemma}
    394 Assume that $H$ is $C^{2}$ on $\bbbr^{2n} \setminus \{ 0\}$ and
    395 that $H'' (x)$ is non-de\-gen\-er\-ate for any $x\ne 0$. Then any local
    396 minimizer $\widetilde{x}$ of $\psi$ has minimal period $T$.
    397 \end{lemma}
    398 %
    399 \begin{proof}
    400 We know that $\widetilde{x}$, or
    401 $\widetilde{x} + \xi$ for some constant $\xi
    402 \in \bbbr^{2n}$, is a $T$-periodic solution of the Hamiltonian system:
    403 \begin{equation}
    404   \dot{x} = JH' (x)\ .
    405 \end{equation}
    406 
    407 There is no loss of generality in taking $\xi = 0$. So
    408 $\psi (x) \ge \psi (\widetilde{x} )$
    409 for all $\widetilde{x}$ in some neighbourhood of $x$ in
    410 $W^{1,2} \left(\bbbr / T\bbbz ; \bbbr^{2n}\right)$.
    411 
    412 But this index is precisely the index
    413 $i_{T} (\widetilde{x} )$ of the $T$-periodic
    414 solution $\widetilde{x}$ over the interval
    415 $(0,T)$, as defined in Sect.~2.6. So
    416 \begin{equation}
    417   i_{T} (\widetilde{x} ) = 0\ .
    418   \label{eq:five}
    419 \end{equation}
    420 
    421 Now if $\widetilde{x}$ has a lower period, $T/k$ say,
    422 we would have, by Corollary 31:
    423 \begin{equation}
    424   i_{T} (\widetilde{x} ) =
    425   i_{kT/k}(\widetilde{x} ) \ge
    426   ki_{T/k} (\widetilde{x} ) + k-1 \ge k-1 \ge 1\ .
    427 \end{equation}
    428 
    429 This would contradict (\ref{eq:five}), and thus cannot happen.\qed
    430 \end{proof}
    431 %
    432 \paragraph{Notes and Comments.}
    433 The results in this section are a
    434 refined version of \cite{clar:eke};
    435 the minimality result of Proposition
    436 14 was the first of its kind.
    437 
    438 To understand the nontriviality conditions, such as the one in formula
    439 (\ref{eq:four}), one may think of a one-parameter family
    440 $x_{T}$, $T\in \left(2\pi\omega^{-1}, 2\pi b_{\infty}^{-1}\right)$
    441 of periodic solutions, $x_{T} (0) = x_{T} (T)$,
    442 with $x_{T}$ going away to infinity when $T\to 2\pi \omega^{-1}$,
    443 which is the period of the linearized system at 0.
    444 
    445 \begin{table}
    446 \caption{This is the example table taken out of {\it The
    447 \TeX{}book,} p.\,246}
    448 \begin{center}
    449 \begin{tabular}{r@{\quad}rl}
    450 \hline
    451 \multicolumn{1}{l}{\rule{0pt}{12pt}
    452                    Year}&\multicolumn{2}{l}{World population}\\[2pt]
    453 \hline\rule{0pt}{12pt}
    454 8000 B.C.  &     5,000,000& \\
    455   50 A.D.  &   200,000,000& \\
    456 1650 A.D.  &   500,000,000& \\
    457 1945 A.D.  & 2,300,000,000& \\
    458 1980 A.D.  & 4,400,000,000& \\[2pt]
    459 \hline
    460 \end{tabular}
    461 \end{center}
    462 \end{table}
    463 %
    464 \begin{theorem} [Ghoussoub-Preiss]\label{ghou:pre}
    465 Assume $H(t,x)$ is
    466 $(0,\varepsilon )$-subquadratic at
    467 infinity for all $\varepsilon > 0$, and $T$-periodic in $t$
    468 \begin{equation}
    469   H (t,\cdot )\ \ \ \ \ {\rm is\ convex}\ \ \forall t
    470 \end{equation}
    471 \begin{equation}
    472   H (\cdot ,x)\ \ \ \ \ {\rm is}\ \ T{\rm -periodic}\ \ \forall x
    473 \end{equation}
    474 \begin{equation}
    475   H (t,x)\ge n\left(\left\|x\right\|\right)\ \ \ \ \
    476   {\rm with}\ \ n (s)s^{-1}\to \infty\ \ {\rm as}\ \ s\to \infty
    477 \end{equation}
    478 \begin{equation}
    479   \forall \varepsilon > 0\ ,\ \ \ \exists c\ :\
    480   H(t,x) \le \frac{\varepsilon}{2}\left\|x\right\|^{2} + c\ .
    481 \end{equation}
    482 
    483 Assume also that $H$ is $C^{2}$, and $H'' (t,x)$ is positive definite
    484 everywhere. Then there is a sequence $x_{k}$, $k\in \bbbn$, of
    485 $kT$-periodic solutions of the system
    486 \begin{equation}
    487   \dot{x} = JH' (t,x)
    488 \end{equation}
    489 such that, for every $k\in \bbbn$, there is some $p_{o}\in\bbbn$ with:
    490 \begin{equation}
    491   p\ge p_{o}\Rightarrow x_{pk} \ne x_{k}\ .
    492 \end{equation}
    493 \qed
    494 \end{theorem}
    495 %
    496 \begin{example} [{{\rm External forcing}}]
    497 Consider the system:
    498 \begin{equation}
    499   \dot{x} = JH' (x) + f(t)
    500 \end{equation}
    501 where the Hamiltonian $H$ is
    502 $\left(0,b_{\infty}\right)$-subquadratic, and the
    503 forcing term is a distribution on the circle:
    504 \begin{equation}
    505   f = \frac{d}{dt} F + f_{o}\ \ \ \ \
    506   {\rm with}\ \ F\in L^{2} \left(\bbbr / T\bbbz; \bbbr^{2n}\right)\ ,
    507 \end{equation}
    508 where $f_{o} : = T^{-1}\int_{o}^{T} f (t) dt$. For instance,
    509 \begin{equation}
    510   f (t) = \sum_{k\in \bbbn} \delta_{k} \xi\ ,
    511 \end{equation}
    512 where $\delta_{k}$ is the Dirac mass at $t= k$ and
    513 $\xi \in \bbbr^{2n}$ is a
    514 constant, fits the prescription. This means that the system
    515 $\dot{x} = JH' (x)$ is being excited by a
    516 series of identical shocks at interval $T$.
    517 \end{example}
    518 %
    519 \begin{definition}
    520 Let $A_{\infty} (t)$ and $B_{\infty} (t)$ be symmetric
    521 operators in $\bbbr^{2n}$, depending continuously on
    522 $t\in [0,T]$, such that
    523 $A_{\infty} (t) \le B_{\infty} (t)$ for all $t$.
    524 
    525 A Borelian function
    526 $H: [0,T]\times \bbbr^{2n} \to \bbbr$
    527 is called
    528 $\left(A_{\infty} ,B_{\infty}\right)$-{\it subquadratic at infinity}
    529 if there exists a function $N(t,x)$ such that:
    530 \begin{equation}
    531   H (t,x) = \frac{1}{2} \left(A_{\infty} (t) x,x\right) + N(t,x)
    532 \end{equation}
    533 \begin{equation}
    534   \forall t\ ,\ \ \ N(t,x)\ \ \ \ \
    535   {\rm is\ convex\ with\  respect\  to}\ \ x
    536 \end{equation}
    537 \begin{equation}
    538   N(t,x) \ge n\left(\left\|x\right\|\right)\ \ \ \ \
    539   {\rm with}\ \ n(s)s^{-1}\to +\infty\ \ {\rm as}\ \ s\to +\infty
    540 \end{equation}
    541 \begin{equation}
    542   \exists c\in \bbbr\ :\ \ \ H (t,x) \le
    543   \frac{1}{2} \left(B_{\infty} (t) x,x\right) + c\ \ \ \forall x\ .
    544 \end{equation}
    545 
    546 If $A_{\infty} (t) = a_{\infty} I$ and
    547 $B_{\infty} (t) = b_{\infty} I$, with
    548 $a_{\infty} \le b_{\infty} \in \bbbr$,
    549 we shall say that $H$ is
    550 $\left(a_{\infty},b_{\infty}\right)$-subquadratic
    551 at infinity. As an example, the function
    552 $\left\|x\right\|^{\alpha}$, with
    553 $1\le \alpha < 2$, is $(0,\varepsilon )$-subquadratic at infinity
    554 for every $\varepsilon > 0$. Similarly, the Hamiltonian
    555 \begin{equation}
    556 H (t,x) = \frac{1}{2} k \left\|k\right\|^{2} +\left\|x\right\|^{\alpha}
    557 \end{equation}
    558 is $(k,k+\varepsilon )$-subquadratic for every $\varepsilon > 0$.
    559 Note that, if $k<0$, it is not convex.
    560 \end{definition}
    561 %
    562 
    563 \paragraph{Notes and Comments.}
    564 The first results on subharmonics were
    565 obtained by Rabinowitz in \cite{rab}, who showed the existence of
    566 infinitely many subharmonics both in the subquadratic and superquadratic
    567 case, with suitable growth conditions on $H'$. Again the duality
    568 approach enabled Clarke and Ekeland in \cite{clar:eke:2} to treat the
    569 same problem in the convex-subquadratic case, with growth conditions on
    570 $H$ only.
    571 
    572 Recently, Michalek and Tarantello (see \cite{mich:tar} and \cite{tar})
    573 have obtained lower bound on the number of subharmonics of period $kT$,
    574 based on symmetry considerations and on pinching estimates, as in
    575 Sect.~5.2 of this article.
    576 
    577 %
    578 % ---- Bibliography ----
    579 %
    580 \begin{thebibliography}{5}
    581 %
    582 \bibitem {clar:eke}
    583 Clarke, F., Ekeland, I.:
    584 Nonlinear oscillations and
    585 boundary-value problems for Hamiltonian systems.
    586 Arch. Rat. Mech. Anal. 78, 315--333 (1982)
    587 
    588 \bibitem {clar:eke:2}
    589 Clarke, F., Ekeland, I.:
    590 Solutions p\'{e}riodiques, du
    591 p\'{e}riode donn\'{e}e, des \'{e}quations hamiltoniennes.
    592 Note CRAS Paris 287, 1013--1015 (1978)
    593 
    594 \bibitem {mich:tar}
    595 Michalek, R., Tarantello, G.:
    596 Subharmonic solutions with prescribed minimal
    597 period for nonautonomous Hamiltonian systems.
    598 J. Diff. Eq. 72, 28--55 (1988)
    599 
    600 \bibitem {tar}
    601 Tarantello, G.:
    602 Subharmonic solutions for Hamiltonian
    603 systems via a $\bbbz_{p}$ pseudoindex theory.
    604 Annali di Matematica Pura (to appear)
    605 
    606 \bibitem {rab}
    607 Rabinowitz, P.:
    608 On subharmonic solutions of a Hamiltonian system.
    609 Comm. Pure Appl. Math. 33, 609--633 (1980)
    610 
    611 \end{thebibliography}
    612 
    613 %
    614 % second contribution with nearly identical text,
    615 % slightly changed contribution head (all entries
    616 % appear as defaults), and modified bibliography
    617 %
    618 \title{Hamiltonian Mechanics2}
    619 
    620 \author{Ivar Ekeland\inst{1} \and Roger Temam\inst{2}}
    621 
    622 \institute{Princeton University, Princeton NJ 08544, USA
    623 \and
    624 Universit\'{e} de Paris-Sud,
    625 Laboratoire d'Analyse Num\'{e}rique, B\^{a}timent 425,\\
    626 F-91405 Orsay Cedex, France}
    627 
    628 \maketitle
    629 %
    630 % Modify the bibliography environment to call for the author-year
    631 % system. This is done normally with the citeauthoryear option
    632 % for a particular contribution.
    633 \makeatletter
    634 \renewenvironment{thebibliography}[1]
    635      {\section*{\refname}
    636       \small
    637       \list{}%
    638            {\settowidth\labelwidth{}%
    639             \leftmargin\parindent
    640             \itemindent=-\parindent
    641             \labelsep=\z@
    642             \if@openbib
    643               \advance\leftmargin\bibindent
    644               \itemindent -\bibindent
    645               \listparindent \itemindent
    646               \parsep \z@
    647             \fi
    648             \usecounter{enumiv}%
    649             \let\p@enumiv\@empty
    650             \renewcommand\theenumiv{}}%
    651       \if@openbib
    652         \renewcommand\newblock{\par}%
    653       \else
    654         \renewcommand\newblock{\hskip .11em \@plus.33em \@minus.07em}%
    655       \fi
    656       \sloppy\clubpenalty4000\widowpenalty4000%
    657       \sfcode`\.=\@m}
    658      {\def\@noitemerr
    659        {\@latex@warning{Empty `thebibliography' environment}}%
    660       \endlist}
    661       \def\@cite#1{#1}%
    662       \def\@lbibitem[#1]#2{\item[]\if@filesw
    663         {\def\protect##1{\string ##1\space}\immediate
    664       \write\@auxout{\string\bibcite{#2}{#1}}}\fi\ignorespaces}
    665 \makeatother
    666 %
    667 \begin{abstract}
    668 The abstract should summarize the contents of the paper
    669 using at least 70 and at most 150 words. It will be set in 9-point
    670 font size and be inset 1.0 cm from the right and left margins.
    671 There will be two blank lines before and after the Abstract. \dots
    672 \keywords{graph transformations, convex geometry, lattice computations,
    673 convex polygons, triangulations, discrete geometry}
    674 \end{abstract}
    675 %
    676 \section{Fixed-Period Problems: The Sublinear Case}
    677 %
    678 With this chapter, the preliminaries are over, and we begin the search
    679 for periodic solutions to Hamiltonian systems. All this will be done in
    680 the convex case; that is, we shall study the boundary-value problem
    681 \begin{eqnarray*}
    682   \dot{x}&=&JH' (t,x)\\
    683   x(0) &=& x(T)
    684 \end{eqnarray*}
    685 with $H(t,\cdot)$ a convex function of $x$, going to $+\infty$ when
    686 $\left\|x\right\| \to \infty$.
    687 
    688 %
    689 \subsection{Autonomous Systems}
    690 %
    691 In this section, we will consider the case when the Hamiltonian $H(x)$
    692 is autonomous. For the sake of simplicity, we shall also assume that it
    693 is $C^{1}$.
    694 
    695 We shall first consider the question of nontriviality, within the
    696 general framework of
    697 $\left(A_{\infty},B_{\infty}\right)$-subquadratic Hamiltonians. In
    698 the second subsection, we shall look into the special case when $H$ is
    699 $\left(0,b_{\infty}\right)$-subquadratic,
    700 and we shall try to derive additional information.
    701 %
    702 \subsubsection{The General Case: Nontriviality.}
    703 %
    704 We assume that $H$ is
    705 $\left(A_{\infty},B_{\infty}\right)$-sub\-qua\-dra\-tic at infinity,
    706 for some constant symmetric matrices $A_{\infty}$ and $B_{\infty}$,
    707 with $B_{\infty}-A_{\infty}$ positive definite. Set:
    708 \begin{eqnarray}
    709 \gamma :&=&{\rm smallest\ eigenvalue\ of}\ \ B_{\infty} - A_{\infty} \\
    710   \lambda : &=& {\rm largest\ negative\ eigenvalue\ of}\ \
    711   J \frac{d}{dt} +A_{\infty}\ .
    712 \end{eqnarray}
    713 
    714 Theorem 21 tells us that if $\lambda +\gamma < 0$, the boundary-value
    715 problem:
    716 \begin{equation}
    717 \begin{array}{rcl}
    718   \dot{x}&=&JH' (x)\\
    719   x(0)&=&x (T)
    720 \end{array}
    721 \end{equation}
    722 has at least one solution
    723 $\overline{x}$, which is found by minimizing the dual
    724 action functional:
    725 \begin{equation}
    726   \psi (u) = \int_{o}^{T} \left[\frac{1}{2}
    727   \left(\Lambda_{o}^{-1} u,u\right) + N^{\ast} (-u)\right] dt
    728 \end{equation}
    729 on the range of $\Lambda$, which is a subspace $R (\Lambda)_{L}^{2}$
    730 with finite codimension. Here
    731 \begin{equation}
    732   N(x) := H(x) - \frac{1}{2} \left(A_{\infty} x,x\right)
    733 \end{equation}
    734 is a convex function, and
    735 \begin{equation}
    736   N(x) \le \frac{1}{2}
    737   \left(\left(B_{\infty} - A_{\infty}\right) x,x\right)
    738   + c\ \ \ \forall x\ .
    739 \end{equation}
    740 
    741 %
    742 \begin{proposition}
    743 Assume $H'(0)=0$ and $ H(0)=0$. Set:
    744 \begin{equation}
    745   \delta := \liminf_{x\to 0} 2 N (x) \left\|x\right\|^{-2}\ .
    746   \label{2eq:one}
    747 \end{equation}
    748 
    749 If $\gamma < - \lambda < \delta$,
    750 the solution $\overline{u}$ is non-zero:
    751 \begin{equation}
    752   \overline{x} (t) \ne 0\ \ \ \forall t\ .
    753 \end{equation}
    754 \end{proposition}
    755 %
    756 \begin{proof}
    757 Condition (\ref{2eq:one}) means that, for every
    758 $\delta ' > \delta$, there is some $\varepsilon > 0$ such that
    759 \begin{equation}
    760   \left\|x\right\| \le \varepsilon \Rightarrow N (x) \le
    761   \frac{\delta '}{2} \left\|x\right\|^{2}\ .
    762 \end{equation}
    763 
    764 It is an exercise in convex analysis, into which we shall not go, to
    765 show that this implies that there is an $\eta > 0$ such that
    766 \begin{equation}
    767   f\left\|x\right\| \le \eta
    768   \Rightarrow N^{\ast} (y) \le \frac{1}{2\delta '}
    769   \left\|y\right\|^{2}\ .
    770   \label{2eq:two}
    771 \end{equation}
    772 
    773 \begin{figure}
    774 \vspace{2.5cm}
    775 \caption{This is the caption of the figure displaying a white eagle and
    776 a white horse on a snow field}
    777 \end{figure}
    778 
    779 Since $u_{1}$ is a smooth function, we will have
    780 $\left\|hu_{1}\right\|_\infty \le \eta$
    781 for $h$ small enough, and inequality (\ref{2eq:two}) will hold,
    782 yielding thereby:
    783 \begin{equation}
    784   \psi (hu_{1}) \le \frac{h^{2}}{2}
    785   \frac{1}{\lambda} \left\|u_{1} \right\|_{2}^{2} + \frac{h^{2}}{2}
    786   \frac{1}{\delta '} \left\|u_{1}\right\|^{2}\ .
    787 \end{equation}
    788 
    789 If we choose $\delta '$ close enough to $\delta$, the quantity
    790 $\left(\frac{1}{\lambda} + \frac{1}{\delta '}\right)$
    791 will be negative, and we end up with
    792 \begin{equation}
    793   \psi (hu_{1}) < 0\ \ \ \ \ {\rm for}\ \ h\ne 0\ \ {\rm small}\ .
    794 \end{equation}
    795 
    796 On the other hand, we check directly that $\psi (0) = 0$. This shows
    797 that 0 cannot be a minimizer of $\psi$, not even a local one.
    798 So $\overline{u} \ne 0$ and
    799 $\overline{u} \ne \Lambda_{o}^{-1} (0) = 0$. \qed
    800 \end{proof}
    801 %
    802 \begin{corollary}
    803 Assume $H$ is $C^{2}$ and
    804 $\left(a_{\infty},b_{\infty}\right)$-subquadratic at infinity. Let
    805 $\xi_{1},\allowbreak\dots,\allowbreak\xi_{N}$  be the
    806 equilibria, that is, the solutions of $H' (\xi ) = 0$.
    807 Denote by $\omega_{k}$
    808 the smallest eigenvalue of $H'' \left(\xi_{k}\right)$, and set:
    809 \begin{equation}
    810   \omega : = {\rm Min\,} \left\{\omega_{1},\dots,\omega_{k}\right\}\ .
    811 \end{equation}
    812 If:
    813 \begin{equation}
    814   \frac{T}{2\pi} b_{\infty} <
    815   - E \left[- \frac{T}{2\pi}a_{\infty}\right] <
    816   \frac{T}{2\pi}\omega
    817   \label{2eq:three}
    818 \end{equation}
    819 then minimization of $\psi$ yields a non-constant $T$-periodic solution
    820 $\overline{x}$.
    821 \end{corollary}
    822 %
    823 
    824 We recall once more that by the integer part $E [\alpha ]$ of
    825 $\alpha \in \bbbr$, we mean the $a\in \bbbz$
    826 such that $a< \alpha \le a+1$. For instance,
    827 if we take $a_{\infty} = 0$, Corollary 2 tells
    828 us that $\overline{x}$ exists and is
    829 non-constant provided that:
    830 
    831 \begin{equation}
    832   \frac{T}{2\pi} b_{\infty} < 1 < \frac{T}{2\pi}
    833 \end{equation}
    834 or
    835 \begin{equation}
    836   T\in \left(\frac{2\pi}{\omega},\frac{2\pi}{b_{\infty}}\right)\ .
    837   \label{2eq:four}
    838 \end{equation}
    839 
    840 %
    841 \begin{proof}
    842 The spectrum of $\Lambda$ is $\frac{2\pi}{T} \bbbz +a_{\infty}$. The
    843 largest negative eigenvalue $\lambda$ is given by
    844 $\frac{2\pi}{T}k_{o} +a_{\infty}$,
    845 where
    846 \begin{equation}
    847   \frac{2\pi}{T}k_{o} + a_{\infty} < 0
    848   \le \frac{2\pi}{T} (k_{o} +1) + a_{\infty}\ .
    849 \end{equation}
    850 Hence:
    851 \begin{equation}
    852   k_{o} = E \left[- \frac{T}{2\pi} a_{\infty}\right] \ .
    853 \end{equation}
    854 
    855 The condition $\gamma < -\lambda < \delta$ now becomes:
    856 \begin{equation}
    857   b_{\infty} - a_{\infty} <
    858   - \frac{2\pi}{T} k_{o} -a_{\infty} < \omega -a_{\infty}
    859 \end{equation}
    860 which is precisely condition (\ref{2eq:three}).\qed
    861 \end{proof}
    862 %
    863 
    864 \begin{lemma}
    865 Assume that $H$ is $C^{2}$ on $\bbbr^{2n} \setminus \{ 0\}$ and
    866 that $H'' (x)$ is non-de\-gen\-er\-ate for any $x\ne 0$. Then any local
    867 minimizer $\widetilde{x}$ of $\psi$ has minimal period $T$.
    868 \end{lemma}
    869 %
    870 \begin{proof}
    871 We know that $\widetilde{x}$, or
    872 $\widetilde{x} + \xi$ for some constant $\xi
    873 \in \bbbr^{2n}$, is a $T$-periodic solution of the Hamiltonian system:
    874 \begin{equation}
    875   \dot{x} = JH' (x)\ .
    876 \end{equation}
    877 
    878 There is no loss of generality in taking $\xi = 0$. So
    879 $\psi (x) \ge \psi (\widetilde{x} )$
    880 for all $\widetilde{x}$ in some neighbourhood of $x$ in
    881 $W^{1,2} \left(\bbbr / T\bbbz ; \bbbr^{2n}\right)$.
    882 
    883 But this index is precisely the index
    884 $i_{T} (\widetilde{x} )$ of the $T$-periodic
    885 solution $\widetilde{x}$ over the interval
    886 $(0,T)$, as defined in Sect.~2.6. So
    887 \begin{equation}
    888   i_{T} (\widetilde{x} ) = 0\ .
    889   \label{2eq:five}
    890 \end{equation}
    891 
    892 Now if $\widetilde{x}$ has a lower period, $T/k$ say,
    893 we would have, by Corollary 31:
    894 \begin{equation}
    895   i_{T} (\widetilde{x} ) =
    896   i_{kT/k}(\widetilde{x} ) \ge
    897   ki_{T/k} (\widetilde{x} ) + k-1 \ge k-1 \ge 1\ .
    898 \end{equation}
    899 
    900 This would contradict (\ref{2eq:five}), and thus cannot happen.\qed
    901 \end{proof}
    902 %
    903 \paragraph{Notes and Comments.}
    904 The results in this section are a
    905 refined version of \cite{2clar:eke};
    906 the minimality result of Proposition
    907 14 was the first of its kind.
    908 
    909 To understand the nontriviality conditions, such as the one in formula
    910 (\ref{2eq:four}), one may think of a one-parameter family
    911 $x_{T}$, $T\in \left(2\pi\omega^{-1}, 2\pi b_{\infty}^{-1}\right)$
    912 of periodic solutions, $x_{T} (0) = x_{T} (T)$,
    913 with $x_{T}$ going away to infinity when $T\to 2\pi \omega^{-1}$,
    914 which is the period of the linearized system at 0.
    915 
    916 \begin{table}
    917 \caption{This is the example table taken out of {\it The
    918 \TeX{}book,} p.\,246}
    919 \begin{center}
    920 \begin{tabular}{r@{\quad}rl}
    921 \hline
    922 \multicolumn{1}{l}{\rule{0pt}{12pt}
    923                    Year}&\multicolumn{2}{l}{World population}\\[2pt]
    924 \hline\rule{0pt}{12pt}
    925 8000 B.C.  &     5,000,000& \\
    926   50 A.D.  &   200,000,000& \\
    927 1650 A.D.  &   500,000,000& \\
    928 1945 A.D.  & 2,300,000,000& \\
    929 1980 A.D.  & 4,400,000,000& \\[2pt]
    930 \hline
    931 \end{tabular}
    932 \end{center}
    933 \end{table}
    934 %
    935 \begin{theorem} [Ghoussoub-Preiss]
    936 Assume $H(t,x)$ is
    937 $(0,\varepsilon )$-subquadratic at
    938 infinity for all $\varepsilon > 0$, and $T$-periodic in $t$
    939 \begin{equation}
    940   H (t,\cdot )\ \ \ \ \ {\rm is\ convex}\ \ \forall t
    941 \end{equation}
    942 \begin{equation}
    943   H (\cdot ,x)\ \ \ \ \ {\rm is}\ \ T{\rm -periodic}\ \ \forall x
    944 \end{equation}
    945 \begin{equation}
    946   H (t,x)\ge n\left(\left\|x\right\|\right)\ \ \ \ \
    947   {\rm with}\ \ n (s)s^{-1}\to \infty\ \ {\rm as}\ \ s\to \infty
    948 \end{equation}
    949 \begin{equation}
    950   \forall \varepsilon > 0\ ,\ \ \ \exists c\ :\
    951   H(t,x) \le \frac{\varepsilon}{2}\left\|x\right\|^{2} + c\ .
    952 \end{equation}
    953 
    954 Assume also that $H$ is $C^{2}$, and $H'' (t,x)$ is positive definite
    955 everywhere. Then there is a sequence $x_{k}$, $k\in \bbbn$, of
    956 $kT$-periodic solutions of the system
    957 \begin{equation}
    958   \dot{x} = JH' (t,x)
    959 \end{equation}
    960 such that, for every $k\in \bbbn$, there is some $p_{o}\in\bbbn$ with:
    961 \begin{equation}
    962   p\ge p_{o}\Rightarrow x_{pk} \ne x_{k}\ .
    963 \end{equation}
    964 \qed
    965 \end{theorem}
    966 %
    967 \begin{example} [{{\rm External forcing}}]
    968 Consider the system:
    969 \begin{equation}
    970   \dot{x} = JH' (x) + f(t)
    971 \end{equation}
    972 where the Hamiltonian $H$ is
    973 $\left(0,b_{\infty}\right)$-subquadratic, and the
    974 forcing term is a distribution on the circle:
    975 \begin{equation}
    976   f = \frac{d}{dt} F + f_{o}\ \ \ \ \
    977   {\rm with}\ \ F\in L^{2} \left(\bbbr / T\bbbz; \bbbr^{2n}\right)\ ,
    978 \end{equation}
    979 where $f_{o} : = T^{-1}\int_{o}^{T} f (t) dt$. For instance,
    980 \begin{equation}
    981   f (t) = \sum_{k\in \bbbn} \delta_{k} \xi\ ,
    982 \end{equation}
    983 where $\delta_{k}$ is the Dirac mass at $t= k$ and
    984 $\xi \in \bbbr^{2n}$ is a
    985 constant, fits the prescription. This means that the system
    986 $\dot{x} = JH' (x)$ is being excited by a
    987 series of identical shocks at interval $T$.
    988 \end{example}
    989 %
    990 \begin{definition}
    991 Let $A_{\infty} (t)$ and $B_{\infty} (t)$ be symmetric
    992 operators in $\bbbr^{2n}$, depending continuously on
    993 $t\in [0,T]$, such that
    994 $A_{\infty} (t) \le B_{\infty} (t)$ for all $t$.
    995 
    996 A Borelian function
    997 $H: [0,T]\times \bbbr^{2n} \to \bbbr$
    998 is called
    999 $\left(A_{\infty} ,B_{\infty}\right)$-{\it subquadratic at infinity}
   1000 if there exists a function $N(t,x)$ such that:
   1001 \begin{equation}
   1002   H (t,x) = \frac{1}{2} \left(A_{\infty} (t) x,x\right) + N(t,x)
   1003 \end{equation}
   1004 \begin{equation}
   1005   \forall t\ ,\ \ \ N(t,x)\ \ \ \ \
   1006   {\rm is\ convex\ with\  respect\  to}\ \ x
   1007 \end{equation}
   1008 \begin{equation}
   1009   N(t,x) \ge n\left(\left\|x\right\|\right)\ \ \ \ \
   1010   {\rm with}\ \ n(s)s^{-1}\to +\infty\ \ {\rm as}\ \ s\to +\infty
   1011 \end{equation}
   1012 \begin{equation}
   1013   \exists c\in \bbbr\ :\ \ \ H (t,x) \le
   1014   \frac{1}{2} \left(B_{\infty} (t) x,x\right) + c\ \ \ \forall x\ .
   1015 \end{equation}
   1016 
   1017 If $A_{\infty} (t) = a_{\infty} I$ and
   1018 $B_{\infty} (t) = b_{\infty} I$, with
   1019 $a_{\infty} \le b_{\infty} \in \bbbr$,
   1020 we shall say that $H$ is
   1021 $\left(a_{\infty},b_{\infty}\right)$-subquadratic
   1022 at infinity. As an example, the function
   1023 $\left\|x\right\|^{\alpha}$, with
   1024 $1\le \alpha < 2$, is $(0,\varepsilon )$-subquadratic at infinity
   1025 for every $\varepsilon > 0$. Similarly, the Hamiltonian
   1026 \begin{equation}
   1027 H (t,x) = \frac{1}{2} k \left\|k\right\|^{2} +\left\|x\right\|^{\alpha}
   1028 \end{equation}
   1029 is $(k,k+\varepsilon )$-subquadratic for every $\varepsilon > 0$.
   1030 Note that, if $k<0$, it is not convex.
   1031 \end{definition}
   1032 %
   1033 
   1034 \paragraph{Notes and Comments.}
   1035 The first results on subharmonics were
   1036 obtained by Rabinowitz in \cite{2rab}, who showed the existence of
   1037 infinitely many subharmonics both in the subquadratic and superquadratic
   1038 case, with suitable growth conditions on $H'$. Again the duality
   1039 approach enabled Clarke and Ekeland in \cite{2clar:eke:2} to treat the
   1040 same problem in the convex-subquadratic case, with growth conditions on
   1041 $H$ only.
   1042 
   1043 Recently, Michalek and Tarantello (see Michalek, R., Tarantello, G.
   1044 \cite{2mich:tar} and Tarantello, G. \cite{2tar}) have obtained lower
   1045 bound on the number of subharmonics of period $kT$, based on symmetry
   1046 considerations and on pinching estimates, as in Sect.~5.2 of this
   1047 article.
   1048 
   1049 %
   1050 % ---- Bibliography ----
   1051 %
   1052 \begin{thebibliography}{}
   1053 %
   1054 \bibitem[1980]{2clar:eke}
   1055 Clarke, F., Ekeland, I.:
   1056 Nonlinear oscillations and
   1057 boundary-value problems for Hamiltonian systems.
   1058 Arch. Rat. Mech. Anal. 78, 315--333 (1982)
   1059 
   1060 \bibitem[1981]{2clar:eke:2}
   1061 Clarke, F., Ekeland, I.:
   1062 Solutions p\'{e}riodiques, du
   1063 p\'{e}riode donn\'{e}e, des \'{e}quations hamiltoniennes.
   1064 Note CRAS Paris 287, 1013--1015 (1978)
   1065 
   1066 \bibitem[1982]{2mich:tar}
   1067 Michalek, R., Tarantello, G.:
   1068 Subharmonic solutions with prescribed minimal
   1069 period for nonautonomous Hamiltonian systems.
   1070 J. Diff. Eq. 72, 28--55 (1988)
   1071 
   1072 \bibitem[1983]{2tar}
   1073 Tarantello, G.:
   1074 Subharmonic solutions for Hamiltonian
   1075 systems via a $\bbbz_{p}$ pseudoindex theory.
   1076 Annali di Matematica Pura (to appear)
   1077 
   1078 \bibitem[1985]{2rab}
   1079 Rabinowitz, P.:
   1080 On subharmonic solutions of a Hamiltonian system.
   1081 Comm. Pure Appl. Math. 33, 609--633 (1980)
   1082 
   1083 \end{thebibliography}
   1084 \clearpage
   1085 \addtocmark[2]{Author Index} % additional numbered TOC entry
   1086 \renewcommand{\indexname}{Author Index}
   1087 \printindex
   1088 \clearpage
   1089 \addtocmark[2]{Subject Index} % additional numbered TOC entry
   1090 \markboth{Subject Index}{Subject Index}
   1091 \renewcommand{\indexname}{Subject Index}
   1092 \input{subjidx.ind}
   1093 \end{document}