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Abstract

A very flexible joint probability density function of wind speed and direction is presented in this paper for use in wind energy analysis.
A method that enables angular–linear distributions to be obtained with specified marginal distributions has been used for this purpose.
For the marginal distribution of wind speed we use a singly truncated from below Normal–Weibull mixture distribution. The marginal
distribution of wind direction comprises a finite mixture of von Mises distributions. The proposed model is applied in this paper to wind
direction and wind speed hourly data recorded at several weather stations located in the Canary Islands (Spain). The suitability of the
distributions is judged from the coefficient of determination R2.

The conclusions reached are that the joint distribution proposed in this paper: (a) can represent unimodal, bimodal and bitangential
wind speed frequency distributions, (b) takes into account the frequency of null winds, (c) represents the wind direction regimes in zones
with several modes or prevailing wind directions, (d) takes into account the correlation between wind speeds and its directions. It can
therefore be used in several tasks involved in the evaluation process of the wind resources available at a potential site. We also conclude
that, in the case of the Canary Islands, the proposed model provides better fits in all the cases analysed than those obtained with the
models used in the specialised literature on wind energy.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

As pointed out by Koeppl [1], certain wind characteris-
tics are important for the evaluation of wind resources and
the design and performance of wind turbines. These
include wind speed and direction probability distribution
functions. The use of continuous wind speed probability
density functions (pdf) is common [1–5]. However, less
common is the use of the proposed model of continuous
wind direction probability density functions [6–12].
0196-8904/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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In the evaluation of wind resources available at a given
site of complex terrain or with several prevailing wind
directions, it is interesting to have use of a joint probability
density function. That is, to have use of a continuous
model of the wind rose1 that enables analysis of the vari-
ability of the energy characteristics of the wind in terms
of speed and direction. Knowledge of these characteristics
enables the wind turbines to be positioned in such a way as
to maximise the capturable energy. It should be borne in
mind that it could be that the most intense winds are not
1 The wind rose usually provides simultaneous information about the
wind direction (normally for eight direction sectors) and intensity in graph
or table form.
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2 h0 represents the angles that the wind speeds form with the prevailing
wind direction, y0 (Fig. 1).

3 The term in square brackets represents the Rayleigh probability
density function, referred to in numerous wind energy papers [20].
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those which blow most hours over the year from a partic-
ular direction. This is an important aspect to be taken into
account when deciding on the orientation of the wind
turbines.

The use of a joint probability density function of wind
speed and direction is also useful in the modelling of the
measure-correlate-predict method (MPC) [13]. However,
the proposed use of continuous [9–12] and discrete [14]
joint probability functions of wind speed and direction is
scarce in the specialised literature on wind energy and other
renewable energy sources.

The isotropic Gaussian model of McWilliams et al.
[9,10] and Weber [11] was derived from the assumptions
that the wind speed component along the prevailing wind
direction (longitudinal component of the wind vector) is
normally distributed with non-zero mean and a given var-
iance, while the wind speed component along a direction
orthogonal to that (lateral component of wind vector) is
independent and normally distributed with zero mean
and the same variance. The anisotropic Gaussian model
of Weber [12] is a generalization of the model of McWil-
liams et al. [9]. In Weber [12], no restrictions are imposed
on the standard deviations of the longitudinal and lateral
fluctuations.

A very flexible joint probability density function of wind
speed and direction is presented in this paper for wind
energy analysis. A method proposed by Johnson and Weh-
rly [15] to obtain angular–linear distributions with specified
marginal distributions has been used for this purpose. For
the marginal distribution of wind speed we use a singly
truncated from below Normal–Weibull mixture distribu-
tion, TNW-pdf, [4]. The marginal distribution of wind
direction comprises a finite mixture of von Mises distribu-
tions [16]. The parameters of the model are estimated using
the Least Squares method [17], which is resolved in this
paper using the Levenberg–Marquardt algorithm [18].
The suitability of the distributions is judged from the coef-
ficient of determination R2 [18]. A comparison is made
between the models presented by McWilliams et al. [9]
and Weber [12] and the proposed joint distribution. This
comparison is based on an analysis of the level of fit to
the cumulative frequencies of hourly wind speeds and wind
directions recorded at four weather stations located in the
Canary Islands (Spain).

2. Models

2.1. Isotropic Gaussian model

The isotropic Gaussian model used by McWilliams et al.
[9,10] and Weber [11] takes as its starting point the follow-
ing hypotheses: (a) the existence of a prevailing wind direc-
tion; (b) the wind speed components for the prevailing
wind direction (longitudinal, vy0) and that which is perpen-
dicular to it (lateral, vx0) are random variables which are
described by a Gaussian distribution; (c) the longitudinal
and lateral components are statistically independent of
each other; (d) the variances of the longitudinal, r2
y0 , and

lateral, r2
x0 , components are the same; (e) the mean of the

longitudinal component, ly0 , is other than zero, and the
mean of the lateral component, lx0 , is null.

According to this model, the longitudinal component
and the lateral component are described by the probability
density functions (pdfs) given by Eqs. (1) and (2)
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1ffiffiffiffiffiffi
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In accordance with hypothesis (c), the joint pdf is given by
the product of the two functions defined in Eqs. (1) and (2).

Performing a polar coordinate transformation, Eq. (3),2

the joint pdf is obtained as a function of the speed and
angle, Eq. (4)

vx0 ¼ v sin h0; vy0 ¼ v cos h0 ð3Þ
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The marginal pdf of the angle h0, Eq. (5), is obtained after
integration over v in Eq. (4)
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The marginal pdf of the wind speed v, Eq. (7),3 is obtained
after integration over h0 in Eq. (4)

fV ðvÞ ¼
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where I0(u) is the modified Bessel function of the first kind
and order zero [19].

2.2. Anisotropic Gaussian model

The anisotropic Gaussian model proposed by Weber
[12], uses as its starting point the same hypotheses as the
isotropic model, with the exception of hypothesis (d). In
the anisotropic model the two variances do not have to
be the same.



J.A. Carta et al. / Energy Conversion and Management 49 (2008) 1309–1320 1311
According to this model, the longitudinal and lateral
components are described by the probability density func-
tions given by Eqs. (1) and (8)

fx0 ðvx0 Þ ¼
1ffiffiffiffiffiffi

2p
p

rx0
exp �ðvx0 Þ2

2r2
x0

" #
ð8Þ

In accordance with hypothesis (c), the joint pdf is given by
the product of the two functions defined in Eqs. (1) and (8).

Performing a polar coordinate transformation, Eq. (3),
the joint pdf is obtained as a function of the speed and
angle that the wind speed forms with the axis of the prevail-
ing wind direction, y0, Eq. (9)
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The marginal pdf of the angle h0, Eq. (10), is obtained after
integration over v in Eq. (9)
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The marginal pdf of the wind speed v, Eq. (12), is obtained
after integration over h0 in Eq. (9)
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5 TNW-pdf can provide many good fits for unimodal, bimodal and
bitangential wind speed frequency distributions. Bitangentiality occurs if
2.3. Proposed model

There are various methods of constructing joint distri-
butions from information about the shape of the marginal
distributions [21]. However, very little has been written in
the scientific literature about angular–linear distribution
models. In this paper, we have used the method proposed
by Johnson and Wehrly [15] to obtain angular–linear
distributions.

Johnson and Wehrly [15] define the probability density
for an angular–linear distribution through Eq. (13)4

fV ;Hðv; hÞ ¼ 2pgðfÞfV ðvÞfHðhÞ; 0 6 h < 2p; �1 6 v <1
ð13Þ
4 h represents the angles that the wind speeds form with the y axis
direction.
where g(�) is the pdf of the circular variable f, given by Eq.
(14)

f ¼ 2p½F V ðvÞ � F HðhÞ� ð14Þ
In the model proposed in this paper we use for wind speed
pdf, fV(v), a Singly Truncated from below Normal Weibull
mixture distribution, TNW-pdf. [4], Eq. (15). According to
Carta and Ramı́rez [4], the mixture distribution proposed
here provides very flexible models5 for wind speed studies
and can be applied in a widespread manner to represent
the wind regimes in many regions. In addition, the TNW-
pdf takes into account the frequency of null winds and,
therefore, can represent wind regimes with high percent-
ages of null wind speeds
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where Z(v,/1,/2) and I(/1,/2) are given by Eq. (16)
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where b is a scale parameter with the same units as the ran-
dom variable and a is a shape parameter; /1 and /2 are
parameters with the same units as the random variable;
x0 is the weight in the mixture of the Singly Truncated
from below Normal distribution (0 6 x0 6 1).

For the wind direction pdf, fH(h), we use a mixture of
von Mises distributions [16], Eq. (17). This mixture pro-
vides a very flexible model for wind direction studies and
can be applied in a widespread manner to represent the
wind direction regimes in zones with several modes or pre-
vailing wind directions [16]

fHðhÞ ¼
XN

j¼1

xj

2pI0ðjjÞ
exp½jj cosðh� ljÞ�; 0 6 h < 2p

ð17Þ
In Eq. (17), N is the number of components of the mixture;
jj P 0 and 0 6 lj < 2p are parameters; xj are nonnegative
quantities that sum to one; that is, Eq. (18)

0 6 xj 6 1; ðj ¼ 1; . . . ;NÞ and
XN

j¼1

xj ¼ 1 ð18Þ

The parameter lj is the mean direction and the parameter
jj is known as the concentration parameter. Here, I0(jj)
there are two distinct points, v1, v2, at which there is a common tangent to
the density curve. Thus, bitangentiality is implied by, but does not imply
bimodality. Informally, bimodality implies an extra hump, but bitangen-
tiality merely an extra bump.



Fig. 1. Reference axes for the measurement of wind speed direction.
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is the modified Bessel function of the first kind and order
zero [19], and is given by Eq. (19)

I0ðjjÞ ¼
1ffiffiffiffiffiffi
2p
p

Z 2p

0

exp½jj cos h�dh ¼
X1
k¼0

1

ðk!Þ2
jj

2

	 
2k
ð19Þ

The cumulative distribution functions for the speed, FV(v),
and direction, FH(h), of the wind are given by Eqs. (20) and
(21), respectively

F V ðvÞ ¼
Z v

0

fV ðvÞdv ð20Þ

F HðhÞ ¼
Z h

0

fHðhÞdh ð21Þ

For the pdf of the circular variable f, in this paper we have
used a mixture of von Mises distributions, Eq. (17).

3. Estimation of the parameters of the several models

3.1. Isotropic and anisotropic Gaussian models

Normally, in meteorology wind direction is measured in
a clockwise direction6 using the North as starting point (the
y-axis in Fig. 1). However, in the models proposed by
McWilliams et al. [9] and Weber [12], the angle measure-
ment starting point is with respect to the prevailing wind
direction (the y0-axis in Fig. 1). hp defines the position of
the prevailing wind direction y0 (and perpendicular x0) in
terms of the xy Cartesian system.

To estimate the parameters on which the isotropic and
anisotropic models depend we will use the method of
moments. In other words, the sample moments are equated
to the corresponding moments in the population,7 Eqs. (22)
and (23)
6 In this paper the angle corresponding to the northerly direction is
taken as angle 0�.

7 This is the method used by McWilliams et al. [9] in an initial paper.
McWilliams and Sprevak [10], in a second paper, used a method which has
since been criticised [12,16].
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where n is the number of data of the sample and h0 is the
wind direction with respect to the prevailing axis y0. If h
is the wind direction with respect to north of the xy Carte-
sian system, then we have, Eq. (24)

h0 ¼
h� hp if h P hp

360� hp þ h if h < hp

(
ð24Þ

McWilliams and Sprevak [10] assume that the prevailing
wind direction is given by the centre of the sector with
the largest marginal frequency of occurrence. In this paper,
hp is determined through Eq. (25) [16]

hp ¼
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where �vx and �vy are the sample mean components with re-
spect to the xy-axes.
3.2. Proposed model

As indicated in Section 2.3, the proposed model is built
from marginal distributions of wind speed and wind direc-
tion. The parameters of these models are estimated in this
paper using the Least Square (LS) method,8 as described in
Refs. [4,16].

From n sample wind speed and direction data, n values
are calculated of the variable f, defined in Eq. (14), through
the use of Eqs. (20), (21) and (26)

fi ¼ 2p½F V ðviÞ � F HðhiÞ�; i ¼ 1; . . . ; n ð26Þ
8 The Levenberg–Marquardt algorithm (LMA) [18] is used. The
Mathcad? Software 2001i programme of MathSoft Engineering &
Education, Inc., [22] is used to find the values of the parameters.



Fig. 2. Horizontal components, vx and vy, of the wind speed and estimated prevailing wind directions.
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Those values of f obtained through Eq. (26) which are low-
er than zero are recalculated with Eq. (27), in such a way
that 0 6 fi < 2p for all i = 1, . . . ,n

fi ¼ 2pþ fi if fi < 0; i ¼ 1; . . . ; n ð27Þ

In this paper, a mixture of von Mises distributions is fitted
to this data sample of f and, following the procedure set
out in Ref. [16], the parameters on which this mixture de-
pends are determined.
9 This value is usually 1.225 kg m�3, corresponding to standard condi-
tions (sea level, 15 �C). Carta and Mentado [24] recommend the use of the
mean air density of the area when the variability of the air density and its
correlation with the wind speed are not taken into account.
10 The power curve of a wind turbine PWT(v), can be approximated by a

piecewise linear function with a few nodes [25], or through cubic spline
interpolation [24].
4. Wind power density distribution and energy output of a
wind turbine

An indicator of the size of the local wind energy
resource is its annual mean wind power density [1,23,24].
Carta and Mentado [24] have proposed a model for wind
power density and wind turbine energy output estimations.
This model takes into account the time variability of air
density q and wind speed, as well as the correlation existing
between both variables.
However, in the literature related to wind energy, it is
normally assumed that air density and wind speed are
not correlated and is assumed that the air density is con-
stant.9 On this assumption, if we multiply the wind power
density with the probability of each wind speed and wind
direction, we have calculated the probability of wind power
density at different wind speed and direction

P ðv; hÞ ¼ 1

2
qfV ;Hðv; hÞv3 ð28Þ

The output of a wind turbine, E(v,h), with a power curve,
PWT(v), in a wind regime with a joint probability density
function, fV,H(v,h), in a period t, can be expressed as a
function of the wind speed and direction using10



1314 J.A. Carta et al. / Energy Conversion and Management 49 (2008) 1309–1320
Eðv; hÞ ¼ t
Z h2

h1

Z v2

v1

PWT ðvÞfV ;Hðv; hÞdv
� �

dh ð29Þ
5. Meteorological data used

In order to determine the flexibility of the proposed
model to represent different wind regimes a study was car-
ried out of samples recorded at different anemometer sta-
tions located in the Canarian Archipelago [4,26]. Four
stations were selected which are representative of the most
complex wind speed and direction distributions in the Can-
ary Islands [4]. For the station called Amagro [4], mean
Table 1
Mean speeds, standard deviations and linear correlation coefficients of the wi

W. station Cartesian axes xy

�vx (m s�1) �vy (m s�1) sx (m s�1) sy (m s�1) rxy (

Amagro 5.56 1.01 5.46 3.47 0.41
R. Prieto 4.13 1.35 4.60 2.27 0.15
P. Vargas 3.51 3.48 3.43 3.83 0.40
Granadilla 4.53 2.75 4.97 3.25 0.58

Fig. 3. Amagro station: (a) marginal distributions of wind direction, (b) wind s
analysed. (c) Probability density function of the variable f.
hourly wind direction and wind speed data have been used
from 7 years (1997–1999, 2001–2003, 2005). For the station
called R. Prieto [4], data have been used from 4 years
(1997–1998, 2001, 2005). For the station called P. Vargas
[4], data have been used from 3 years (2002–2004). For
the station called Granadilla [4], data have been used from
5 years (1998–2000, 2002, 2004). All the wind direction and
wind speed records data were taken at a height of 10 m
above ground level.

In Fig. 2 we can see the horizontal components, vx and
vy, of the wind speed at the four stations under study, as
well as the prevailing wind directions estimated using Eq.
(25).
nd speed for axes xy and x0y0

Axes x0y0

–) �vx0 (m s�1) �vy0 (m s�1) sx0 (m s�1) sy0 (m s�1) rx0y0 (–)

9 0 5.65 3.02 5.65 �0.229
9 0 4.69 2.24 4.35 0.312
3 0 4.94 2.82 4.30 �0.123

0 5.30 2.46 5.40 0.145

peed and (d) wind power probability density function, for the three models



Fig. 4. R. Prieto station: (a) marginal distributions of wind direction, (b)wind speed and (d) wind power probability density function, for the three models
analysed. (c) Probability density function of the variable f.
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Table 1 shows the mean speeds, standard deviations and
linear correlation coefficients, rxy and rx0y0 , of the compo-
nents of the wind speed for axes xy and x0y0, respectively.

6. Analysis of results

Fig. 3 shows, for the case of Amagro, the marginal dis-
tributions of the wind direction (Fig. 3a), wind speed
(Fig. 3b), and wind power probability density functions
(Fig. 3d) for the three models analysed. Also shown is the
probability density function of the variable f (Fig. 3c),
involved in the proposed model, Eqs. (13) and (14). The
same graphs are represented in Figs. 4–6, but for the sta-
tions of R. Prieto, P. Vargas and Granadilla, respectively.

The parameters of the proposed marginal distributions
of wind speed for the four stations under study are shown
in Table 2. The proposed marginal distributions of wind
speed have been built from a mixture of six von Mises dis-
tributions11 and their parameters are shown in Table 3.
11 The influence of the number of components of the von Mises mixture
on the degree of fit is discussed in Ref. [16].
It can be seen in these figures that the proposed marginal
distributions have a better degree of fit to the sample histo-
grams than the marginal distributions obtained from the
isotropic (Eqs. (5) and (7)) [9] and anisotropic models
(Eqs. (10) and (12)) [12].

The probability density function g(f), Eq. (13), in which
we see the existing relation between wind speed and direc-
tion has been represented by a mixture of two von Mises
distributions (Table 4). In the cases analysed, the use of
mixture distributions of more than two components has
not provided an increase in the coefficient of determination,
R2, of the joint probability density functions. We should
point out that when we have used the Maximum Likeli-
hood method instead of the Least Squares method to esti-
mate the parameters of the distribution, g(f), we have
obtained a uniform distribution,12 g(f) = 1/2p. This indi-
cates, as can be seen in Eq. (13), that according to the Max-
imum Likelihood method wind speed and wind direction
are independent. However, we should point out that, in
the cases analysed, the use of mixture distributions of
12 When j = 0, von Mises distribution is the uniform distribution [27].



Fig. 5. P. Vargas station: (a) marginal distributions of wind direction, (b) wind speed and (d) wind power probability density function, for the three
models analysed. (c) Probability density function of the variable f.

13 The value of R2 varies between 0 and 1. The higher R2 is, the greater
the fit.
14 This might be due to the fact that the hypotheses on which the

analysed Gaussian models are based are not fully met when applied to the
data observed at the weather stations considered.
15 To represent each curve in the Figure, the considered angle has been

put in Eq. (28) and the wind speed vhas been varied between 0 and /. We
have taken q = 1.225 kg m�3.
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two components has provided coefficients of determina-
tion, R2, of the joint probability density functions slightly
higher than those obtained when using the uniform
distribution.

In order to determine the existing correlation between
the hourly sample wind speeds (linear variable) and wind
directions (circular variable), we have used the correlation
coefficient proposed by Mardia [28]

r2 ¼ r2
vc þ r2

vs � 2rvcrvs

1� r2
cs

ð30Þ

where

rvc ¼ corrðv; cos hÞ; rvs ¼ corrðv; sin hÞ;
rcs ¼ corrðcos h; sin hÞ ð31Þ

As can be seen in Figs. 7a, 8a, 9a and 10a, the values of the
coefficients of correlation r2, at the stations under study,
are low.

Fig. 7 shows, for the case of Amagro, the joint probabil-
ity density function obtained with the proposed model
(Fig. 7a) and a graph which represents the theoretical
cumulative distribution against the sample cumulative dis-
tribution (Fig. 7b), and in which we can see the degree of fit
to the sample data of the three bivariable distributions ana-
lysed. In Figs. 8–10 the same graphs are shown, but for the
stations R. Prieto, P. Vargas and Granadilla, respectively.

It can be seen that, for all the stations analysed, the pro-
posed joint probability density function has a higher degree
of fit13 to the sample data than the bivariable distributions
proposed in the specialised literature on wind energy.14

The proposed joint probability function can be used to
estimate the wind power density per rotor swept area
and wind speed. As an example, we can see in Fig. 11a,
for Amagro, the wind power density for five wind direc-
tions (60�, 79.7�, 90�, 100� and 260�).15 For the same
station, we can see in Fig. 11b the wind power density



Fig. 6. Granadilla station: (a) marginal distributions of wind direction, (b) wind speed and (d) wind power probability density function, for the three
models analysed. (c) Probability density function of the variable f.

Table 3
Parameters of the marginal distributions of wind direction

Number of components j Amagro R. Prieto P. Vargas Granadilla

lj (rad) jj (–) xj (–) lj (rad) jj (–) xj (–) lj (rad) jj (–) xj (–) lj (rad) jj (–) xj (–)

1 0.678 32.501 0.034 0.725 14.792 0.081 0.544 11.412 0.463 0.218 11.149 0.118
2 1.348 19.360 0.621 1.323 15.512 0.519 0.994 4.869 0.297 1.056 18.754 0.601
3 1.339 1.920 0.154 0.403 0.001 0.038 1.776 3.776 0.09 1.683 6.689 0.072
4 3.593 1.029 0.130 0.000 1.140 0.189 3.806 3.105 0.081 3.326 1.031 0.083
5 4.404 19.395 0.044 1.876 13.260 0.125 5.182 5.43 0.041 4.454 2.945 0.085
6 6.283 21.494 0.018 4.401 31.906 0.048 5.905 28.484 0.026 5.473 18.540 0.042

Table 2
Parameters of the marginal distributions of wind speed

W. station Normal truncated Weibull

/1 (m s�1) /2 (m s�1) x0 (–) a (–) b (m s�1) 1 � x0 (–)

Amagro 4.272 3.783 0.462 3.471 10.845 0.538
R. Prieto �0.36 5.504 0.364 3.145 7.816 0.636
P. Vargas 2.791 2.28 0.396 4.008 9.237 0.604
Granadilla 9.193 3.017 0.635 2.272 3.54 0.365
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Table 4
Parameters of the probability density function of the variable f

Number of components j Amagro R. Prieto P. Vargas Granadilla

lj (rad) jj (–) xj (–) lj (rad) jj (–) xj (–) lj (rad) jj (–) xj (–) lj (rad) jj (–) xj (–)

1 3.589 0.8 0.593 4.390 0.620 0.947 2.594 0.687 0.366 2.718 0.968 0.249
2 5.446 1.264 0.407 5.531 4.435 0.053 5.016 1.052 0.634 4.746 0.879 0.751

Fig. 7. Amagro station: joint probability density function (a), probability graph (b).

Fig. 8. R. Prieto station: (a) joint probability density function, (b) probability graph.
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per rotor swept area and wind direction.16 In a similar way,
for a given wind turbine the obtainable energy can be
16 Each curve was obtained by integrating the wind speed in an interval
(0–10 m/s, 10–25 m/s and 0–1m/s) in Eq. (28), and representing the wind
power density as a function of the variations in wind direction between 0�
and 360�. We have taken q = 1.225 kg m�3.
calculated as a function of the wind direction using Eq.
(29).17
17 Integrating the wind speed between 0 and1 in Eq. (29), and the angles
in the desired intervals.



Fig. 9. P. Vargas station: (a) joint probability density function, (b) probability graph.

Fig. 10. Granadilla station: (a) joint probability density function, (b) probability graph.

Fig. 11. Amagro station: (a) wind power density per rotor swept area and wind speed, (b) wind power density per rotor swept area and wind direction.
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7. Conclusions

The conclusions reached are that the joint probability
density function proposed in this paper is very flexible
and complete: (a) can represent unimodal, bimodal and
bitangential wind speed frequency distributions, (b) takes
into account the frequency of null winds, (c) represents
the wind direction regimes in zones with several modes or
prevailing wind directions, (d) takes into account the corre-
lation between wind speed and direction. It can therefore
be used in several tasks involved in the evaluation process
of the wind resources available at a potential site. We also
conclude that, in the case of the Canary Islands, the pro-
posed model provides better fits in all the cases analysed
than those obtained with the models used in the specialised
literature on wind energy. It should be pointed out that the
analysed stations have been installed in areas suitable for
the development of the large scale exploitation of wind
energy [26], and have thus avoided terrain of complex
topography. We therefore consider that the results of the
proposed model are even better when set against those of
other models for sites with more complex wind direction
histograms.
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