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A statistical distribution for describing wind direction provides information about the wind regime at a
particular location. In addition, this information complements knowledge of wind speed, which allows
researchers to draw some conclusions about the energy potential of wind and aids the development of
efficient wind energy generation. This study focuses on modeling the frequency distribution of wind
direction, including some characteristics of wind regime that cannot be represented by a unimodal dis-
tribution. To identify the most suitable model, a finite mixture of von Mises distributions were fitted to
the average hourly wind direction data for nine wind stations located in Peninsular Malaysia. The data
used were from the years 2000 to 2009. The suitability of each mixture distribution was judged based
on the R2 coefficient and the histogram plot with a density line. The results showed that the finite mixture
of the von Mises distribution with H number of components was the best distribution to describe the
wind direction distributions in Malaysia. In addition, the circular density plots of the suitable model
clearly showed the most prominent directions of wind blows than the other directions.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Wind direction is one of the most important factors in evaluat-
ing the characteristics of the wind regime of a particular region.
Wind direction has a substantial impact on the lives of human
beings. Wind direction impacts civil engineering structures, such
as towers, bridges and tall buildings [1]. In addition, wind direction
has been recognized as an important aspect in the evaluation
of wind energy because information about wind direction can
complement information about wind speed to aid in drawing con-
clusions about energy potential. Carta et al. [2] stated that knowl-
edge of wind direction characteristics enables wind turbines to be
positioned in such a way as to maximize the amount of captured
energy. Unfortunately, we have found that most studies regarding
the potential of wind do not describe information about the char-
acteristics of wind direction well, perhaps because of the difficul-
ties involved in the analysis and complex statistical modeling of
wind direction compared to wind speed. In this study, we try to
overcome some specific problems involved in the statistical model
for wind direction data to gain some insight into the characteristics
of wind directions in Malaysia.

Several studies on wind direction have been conducted for the
purposes of energy modeling and evaluation [2–4]. Carta et al.
[3] proposed a finite mixture of the von Mises distribution for
modeling the directional wind data from several wind stations in
the Canary Islands. The suitability of the distributions was judged
according to the coefficient of determination, R2. Carta and col-
leagues found that a mixture of von Mises distributions provided
a flexible model for studies of wind direction that could be applied
to representations of wind direction regimes in regions with
several modes or prevailing wind directions. They additionally
concluded that as the number of components N of the mixture
distribution increases, the value of the R2 coefficient increases,
but that the variations in R2 were not significant for N > 6. Kamisan
et al. [4] fit four types of circular distributions, namely the
von Mises distribution, the circular uniform distribution, the
wrapped-normal distribution and the wrapped-Cauchy distribu-
tion to southwesterly Malaysian wind direction data. Two indica-
tors, the mean circular distance and chord length, were used to
determine which distributions gave the best fit. Their results indi-
cated that the von Mises distribution gave the best fit for all of the
stations under study. Alternatively, Razali et al. [1] determined the
best distribution to fit wind direction data from a station at
the Universiti Kebangsaan Malaysia (UKM). Three types of circular
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distributions, the von Mises distribution, the generalized von Mises
distribution and the wrapped-Cauchy distribution, were fit to the
data. The most suitable distribution was determined using a histo-
gram with a density line and a mean circular error. Their results
showed that the von Mises distribution fit the data very well com-
pared to the other distributions. Thus, the researchers concluded
that the von Mises distribution can be used to forecast wind direc-
tion. Conversely, Carta et al. [2] proposed a more flexible joint
probability density of wind speed and direction by using the angu-
lar–linear distributions obtained by the Normal–Weibull mixture
distribution as a marginal distribution for wind speed and the fi-
nite mixture of von Mises as a marginal distribution for wind direc-
tion. They concluded that the joint distribution proposed is
representative of wind directions with several modes. The joint
distribution proposed is also representative of the unimodal, bimo-
dal, and bitangential wind speed frequency distributions. However,
we believe that their proposed method is rather complex and is
quite cumbersome in some applications. Thus, in this study, we
try to identify more parsimonious and suitable models of the dis-
tributions of wind direction for several wind stations in Malaysia
to gain some insight into the wind regime as well as the wind en-
ergy potential.
2. Study area and data

Malaysia is a country that lies entirely in the equatorial zone,
situated in the southeastern part of Asia. Its geographic coordinates
are 2�300 north latitude and 112�300 east longitude. Throughout the
year, Malaysia experiences a wet and humid climate with daily
temperature ranging from 25.5 to 35 �C. The wind that blows
across the peninsula as well as Sabah and Sarawak is influenced
by the monsoon seasons, namely the southwest monsoon, the
northeast monsoon and two short inter-monsoons. The two mon-
soons that contribute to the rainy seasons are the southwest mon-
soon, which occurs from May until September, and the northeast
monsoon, which occurs from November until March. The later
monsoon brings about heavier rainfall on the peninsula, and the
most affected areas are in the east and south. Malaysia is a mari-
time country that is also influenced by the effects of sea breezes
and land breezes, especially when the sky is not cloudy. During
most afternoons, sea breezes occur with speeds of 10–15 knots.
However, at night, the reverse process occurs: weak land breezes
occur in the coastal areas [5].

The data used in this study were obtained from the Department
of the Environment Malaysia and the Malaysian Meteorological
Department. Nine stations were selected for this study: Mersing,
Kuala Terengganu Airport, Malacca, Bayan Lepas, Ipoh, Kota Bahru,
Balok Baru, Perai and Kangar (shown in Table 1 and Fig. 1). The sta-
tions selected in this study were recommended by Masseran et al.
[6–8] to be investigated in greater detail with regards to wind en-
ergy evaluation and production in Malaysia. In this study, the
hourly wind direction data from January 1, 2007 to November
Table 1
Geographic coordinates and altitudes for each station.

Stations Latitude Longitude

Mersing 2�270N 105�500E
Kuala Teregganu 5�230N 103�060E
Malacca 2�160N 102�150E
Bayan Lepas 5�180N 100�160E
Ipoh 4�340N 101�060E
Kota Bahru 6�100N 102�170E
Balok Baru 3�570N 103�220E
Perai 5�230N 100�240E
Kangar 6�250N 100�110E
30, 2009 were used. Wind direction data are circular because they
are recorded in terms of degrees, from 0� to 360�. However, for
modeling, data transformation to radian units can be easily
performed.

3. Wind direction sensor

The wind direction sensor used by the Department of the Envi-
ronment Malaysia to collect hourly wind direction data for each
station was provided by Met One Instruments. The 020C Wind
Direction Sensor provides azimuth data for use in micrometeoro-
logical measurements related to operational studies and research.
The lightweight airfoil vane is directly coupled to a single precision
potentiometer. This sensor is especially useful when a low starting
threshold, a high damping ratio, or a short delay distance is
required. Fig. 2 shows the 020C Wind Direction Sensor model,
while Table 2 describes the specifications of the 020C Wind Direc-
tion Sensor, including its characteristics, its accuracy and its range
value, for more details, please refer to [9].

4. Methods

Several types of circular distributions have been used to model
the wind direction data of particular regions, for example, the von
Mises distribution, the generalized von Mises distribution, the
finite mixture of von Mises, the wrapped-Cauchy, the circular uni-
form distribution and the wrapped-normal distribution, among
many others. However, the von Mises and the finite mixture of
von Mises are among the most commonly used in modeling wind
directional data; for examples, see [1–4,10–14] and many more.
A finite mixture of von Mises is a flexible model for dealing with
wind direction data that have several modes [3]. Thus, in this
study, the single and the mixture of the von Mises distributions
were used as candidate models for the wind direction data in
Malaysia before a further analysis was performed to investigate
the potential of wind energy.

4.1. The finite mixture of von Mises distributions

The von Mises distribution is a probability distribution function
whose total probability is concentrated in the circumference of a
unit circle. It was introduced by von Mises in 1918, and its impor-
tance and its similarities to the Normal distribution have been
emphasized by Gumbel et al. [15]. From the point of view of statis-
tical inference, the von Mises distribution is the most commonly
used model for modeling circular data. Let h be a random variable
representing wind direction in radians units. Thus, the probability
density function for a single von Mises distribution can be written
as

f ðh;l;jÞ ¼ 1
2pI0ðjÞ

ej cosðh�lÞ ð1Þ

where h is a random variable representing the wind direction in
radians, 0 6 l < 2p is the mean direction and j P 0 is a concentra-
tion parameter. while I0 (j) in the normalizing constant is the mod-
ified Bessel function of the first kind and of order zero, given by

I0ðjÞ ¼
1

2p

Z 2p

0
ej cos hdh ¼

X1
r¼0

j
2

� �2r 1
r!

� �2

ð2Þ

The cumulative distribution function for the von Mises mixture
distribution is given by

Fðh;l;jÞ ¼
hI0ðjÞ þ 2

P1
p¼1

IpðjÞ sin pðh�lÞ
p

n o
2pI0ðjÞ

ð3Þ



Fig. 1. Locations of wind stations in Peninsular Malaysia.
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However, in some applications of wind direction modeling,
the observed wind data cannot be represented by a unimodal dis-
tribution. To overcome this problem, a finite von Mises mixture
distributions (FVMM) which comprises a sum of H von Mises prob-
ability distributions, has been proposed. This distribution is given
by

f ðh;lh;jh;xhÞ ¼
XH

h¼1

xh
1

2pI0ðjhÞ
ejh cosðh�lhÞ ð4Þ

where h is a random variable representing the wind direction in
radians units, lh, jh is composed of a mean direction parameter
and concentration parameter, respectively, for h = 1,2, . . . ,H
components of the von Mises distribution, while xh is a mixing
parameter of nonnegative quantities that sum to one, given by

0 6 xh 6 1 and
XH

h¼1

xh ¼ 1 for ðh ¼ 1;2 . . . ;HÞ ð5Þ

The cumulative distribution function for the von Mises mixture
distribution is given by
Fðh;lh;jh;xhÞ ¼
XH

h¼1

xh

hI0ðjhÞ þ 2
X1
p¼1

IpðjhÞ sin pðh�lhÞ
p

( )
2pI0ðjhÞ

ð6Þ

Conversely, let x0 = [coshi, sinhi]0 be circular data in terms of
rectangular coordinates, with h as a random variable representing
the wind direction in radians unit, as mention in Eqs. (1) and (4).
Thus, the von Mises mixture distribution can also be written as

f ðx;lh;jhÞ ¼
XH

h¼1

xh
1

2pI0ðjhÞ
eðjhx’lhÞ ð7Þ

where ||l|| = 1, and j > 0. This type of von Mises mixture distribution
describes the model for circular data in terms of rectangular coordi-
nates. Readers who are interested in a discussion of the von Mises
and the von Mises mixture distributions are referred to [16–18].

4.2. The expected maximization algorithm for parameter estimation

Banerjee et al. [18] provided the solution for the parameter
estimate of a von Mises mixture distribution in Eq. (7) using an



Fig. 2. The 020C Wind Direction Sensor model [9].

Table 2
020C Wind Direction Sensor specifications [9].

Performance characteristics
Azimuth Electrical 0–357�

Mechanical 0–360�
Threshold 0.5 mph (0.22 m/s)
Linearity b of full scale
Accuracy ±3�

Resolution <0.1�
Damping ratio Standard 0.6 (magnesium tail) (meet EPA

specification)
Delay distance Less than 3 ft (91 cm)
Temperature range �50 �C to +65 �C (�58�F to +149�F)

Electrical characteristics
Power requirements 12 VDC at 10 mA, 12 VDC at 250 mA for internal

heater
Output signal

selectable
a. 0–5 V for 0–360�
b. 0–2.5 V for 0–360�

Output impedance 100 X Maximum

Physical characteristics
Weight 1.5 lbs (0.68 kg)
Finish Clear anodized aluminium

Cable and mounting
PN 1957 Mounting Cable assembly; specify length in feet or meters

PN191 Crossarm assembly (contains orientation
lock)
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expectation maximization (EM) algorithm as an alternative meth-
od for finding the maximum likelihood estimates. Let ah = (lh, jh)
denote the parameter of the von Mises mixture distribution from
Eq. (7) for 1 < h < H. Thus, the von Mises mixture distribution can
simply be written as

f ðx; HÞ ¼
XH

h¼1

xhfhðxjahÞ ð8Þ

where H = (x1, x1, . . . ,xH, a1, a2, . . . ,aH). According to Banerjee
et al., [18], to generate a random sample from this mixture
distribution, the h-th von Mises distribution will be randomly
chosen with probability xhk. Then, the random samples from
fh(x|ah) will be generated. Let, X = {x1, x2, . . . ,xn}0 be the
observed data following a von Mises mixture distribution from
Eq. (8), and let Z = {z1, z2, . . . ,zn}0 be the corresponding set of
hidden random variables that indicate a particular von Mises
distribution from which a sample is generated. Particularly,
zh = h if xi is generated from fh(x|ah). Thus, the log-likelihood
can be written as

log f ðX; ZjHÞ ¼
XH

i¼1

logðxzi
fzi
ðxijazi

ÞÞ ð9Þ

Suppose that the posterior distribution, p(h|xi, H), of the hidden
variables Z|(X, H) is known. From here, the expectation step (E-
step) is computed as the expectation of the log-likelihood evalu-
ated using the current estimate for the parameters. In the maximi-
zation step (M-step), the parameter estimates are computed by
maximizing the expected log-likelihood obtained in the E-step. In
brief, the parameter estimates for the mixture von Mises are given
by

x̂h ¼
1
n

Xn

i¼1

pðhjxi;HÞ ð10Þ

l̂h ¼
rh

krhk
ð11Þ

Id=2ðĵhÞ
Id=2�1ðĵhÞ

¼ krhkXN

i¼1

pðhjxi;HÞ
ð12Þ

where rh ¼
Pn

i¼1xipðhjxi;HÞ. Readers that would like a detailed dis-
cussion of the parameters estimates for the von Mises mixture dis-
tribution using the EM algorithm can refer to [17–19].

4.3. Evaluating goodness of fit using the R2 coefficient

In this study, the R2 coefficient was used to evaluate the good-
ness of fit for each fitted model. A large value of R2 indicates a mix-
ture distribution that fits the data well. R2 has been used for
goodness of fit comparisons because it quantifies the correlation
between the observed probabilities and the predicted probabilities,
based on a particular distribution. The R2 coefficient is determined
as

R2 ¼
Pn

i¼1ðbF i � FÞ2Xn

i¼1

ðbF i � FÞ2 þ
Pn

i¼1ðFi � bF iÞ2
ð13Þ

where Fi is a set of empirical cumulative probabilities, bF i is a set of
estimated cumulative probabilities for the suitable model and

F ¼
Pn

i¼1
bF i

n . The estimated cumulative probabilities of bF i were
derived from the cumulative distribution function of the proposed

model. A large R2 indicates a better model fit of bF i to the empirical
cumulative probabilities Fi. The R2 coefficient has been used by
several researchers to measure goodness of fit, see [2,3,20–22].
The plot of the histogram with a density line is also shown to
support our conclusion.

4.4. Evaluating goodness of fit using the mean absolute percentage
error

The mean absolute percentage error (MAPE) is an index that is
very useful in measuring the accuracy of a fitted model in statistics.
The MAPE is calculated by computing the difference between the



Table 3
The parameter estimates for the FVMM (H = 1, 2, 3, 4, 5, 6, 7 and 8) based on the EM
algorithm.

FVMM Parameter estimates

l0 j x

H = 1 �0.1557523 �0.9877961 0.477 1

H = 2 0.9582439 0.2859522 0.5156 0.6487694
�0.5699040 �0.8217113 11.431 0.3512306

H = 3 �0.5238709 �0.8517977 22.747 0.2699097
�0.7521964 �0.6589390 0.1788 0.5835522

0.9784459 0.2065034 33.990 0.1465381

H = 4 �0.7348117 �0.6782712 3.028 0.2511905
0.8617943 0.5072579 0.465 0.4275728
�0.4928733 �0.8701011 40.87 0.1927872

0.9792641 0.2025880 40.78 0.1284494

H = 5 �0.1772620 0.9841637 2.084 0.1468458
0.9873568 �0.1585139 1.636 0.2220188
0.9769764 0.2133474 41.24 0.1277784
�0.4876439 �0.8730426 42.96 0.1850011
�0.7300458 �0.6833982 3.066 0.3183558

H = 6 �0.4885167 �0.8725546 39.91 0.1987266
�0.8165384 �0.5772912 3.58 0.2373109

0.9769764 0.2133474 44.64 0.1175061
0.9943873 0.1058016 2.34 0.1886927
�0.07033087 �0.99752372 1.52 0.1332170
�0.2408133 0.9705715 3.01 0.1245467

H = 7 0.9784459 0.2065034 46.59 0.11328076
0.9543903 �0.2985617 1.15 0.08397336
0.7736686 �0.6335905 1.18 0.08699198
0.8906607 0.4546685 2.45 0.13801148
�0.4893890 �0.8720656 39.95 0.19849876
�0.7976502 �0.6031204 2.68 0.31353498
�0.1527882 �0.9882590 14.03 0.06570868

H = 8 �0.99823590 �0.05937241 4.59 0.11383551
0.8225021 0.5687621 1.53 0.10857548
0.9790610 0.2035672 43.22 0.12334809
�0.109171 �0.994023 6.66 0.22184295

0.6277124 �0.7784453 1.85 0.12345291
�0.3720380 0.9282175 51.4 0.04379492
�0.4841478 �0.8749862 49.4 0.15657467

0.8225021 0.5687621 1.53 0.10857548
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observed data and the data simulated from the model, which can
be written as

MAPE ¼ 100
n

Xn

i¼1

hi � ĥi

hi

�����
�����

where hi is the observed wind direction data and ĥi is the simulated
data from the fitted von Mises model. The absolute value in this cal-
culation is summed for every fitted data point in time and divided
again by the number of fitted data points n. Multiplying this figure
by 100 transforms it into a percentage error. A small MAPE value
indicates a mixture distribution that fits the data well. The results
for the MAPE are compared with the R2 coefficients.

5. Results and discussion

As mentioned above, the objective of this study was to identify
the most suitable mixture distribution for the wind direction at the
Mersing station to gain insight into the wind regime at this loca-
tion. Firstly, the Mersing station was chosen as an example to show
in detail how the analysis was carried out; the same method was
followed for the other stations. Table 3 shows the parameter esti-
mates of the von Mises mixture distribution (H = 1, 2, . . . ,8) based
on the EM algorithm method for the Mersing station. The parame-
ter means, l, are defined in terms of rectangular coordinates,
l0 = [cosl, sinl]0. However, transforming the results into degrees,
0� 6 l < 180�, may be more appropriate, as shown in Table 4.
Fig. 3 represents the fitted von Mises mixture distribution (H = 1,
2, . . . ,8) for the wind direction at the Mersing station. Here, the sin-
gle von Mises distribution (H = 1) failed to accurately model the
wind direction data at the Mersing station. However, when the
number of components N of the mixture distribution increased,
the FVMM models adequately fit the observed data. Alternatively,
for H = 6, 7 and 8 the fitted FVMM models have an approximately
similar (to each other) accuracy for modeling the observed data. To
support our conclusion, the R2 coefficient and the MAPE were used
to evaluate the goodness of fit for each fitted model

Fig. 4a shows the R2 coefficient for each fitted FVMM model. The
R2 values increase significantly for H = 1, 2, 3, 4 and 5. From the re-
sults obtained, the relevance of the increasing value of R2 to the
precise modeling of the actual modality of the wind direction his-
togram is clear because the R2 measurements indicate how much
each of the FVMM models can be used to describe the observed
data. Thus, a higher value of R2 will provide an analysis of the data
model that is more accurate. For example, the R2 for an FVMM with
H = 1 component is approximately 0.93. This value of R2 is quite
high. In terms of regression analysis, a value of R2 > 0.7 is usually
considered good enough for data modeling and forecasting. How-
ever, in terms of fitting a statistical distribution, modeling and
analysis need to be more precise. Thus, a value of R2 > 0.7 is not
sufficient, particularly in the case of multi-modal data. This argu-
ment is substantiated by the case of an FVMM model with H = 1
component. Because the value of R2 for the FVMM with H = 1
component is approximately 0.93, most of the data can still be
modeled. However, in terms of precision, some of the modality of
the data cannot be modeled in an accurate way. Thus, by increasing
the number of components of the FVMM model, the value of R2

also increases, and consequently, with the highest values of R2 pro-
vided by the FVMM models with H = 6, 7 and 8 components, most
of the data, including the modality of the data, can be modeled
accurately.To examine in more detail the role of the R2 value in
determining the best model for wind direction data, it is interest-
ing to make a comparison between FVMM (H = 5) and FVMM
(H = 6, 7, 8). From Fig. 3, it is clear that the densities are very sim-
ilar for H > 5. The R2 value for the FVMM model with H = 5 compo-
nents is approximately 0.982, and by increasing the components to
H = 6, 7, and 8, the R2 value increases to be more than 0.999. How-
ever, the variations in R2 are not pronounced for H = 6, 7 and 8, as
shown in Fig. 4a. It is difficult to measure the significant differences
between FVMM (H = 5) and FVMM (H = 6, 7, 8) based on the figure,
however, R2 clearly shows that FVMM (H = 6, 7, 8) is the best model
for the data: more than 99.9% of the actual data can be modeled in
a precise way with FVMM (H = 6, 7, 8), while 98.2% of the data can
be modeled with FVMM (H = 5). Because our objective is to select
the best model, FVMM (H = 6) is more preferable than FVMM
(H = 5), particularly in modeling the modality of the data. By this
argument, it is clear that the results determined by R2 are very
important for supporting and strengthening every decision made
regarding the best model selected from the histograms with a den-
sity line. Thus, we conclude that the most suitable model for the
wind direction at the Mersing station is FMVM with H = 6 compo-
nents. Because the ‘best’ model for describing the wind direction at
the Mersing station has been determined, it is reasonable to extract
some valuable information from the model. Fig. 4b shows a circular
density plot for the mixture of von Mises with H = 6 components.
Fig. 4b clearly shows that most of the wind was blowing from
the north–north-east, the west-south-west and some from the
east-south-east. The most prominent wind direction for the Mers-
ing station corresponded to the parameter l, 215–240�, 6–12� and
103�, as shown in Table 4. The other directions show an approxi-
mately uniform dispersion, which indicates that the wind direction



Table 4
The parameter l for each mixture distribution in terms of degrees.

h H = 1 H = 2 H = 3 H = 4 H = 5 H = 6 H = 7 H = 8
l l l l l l l l

1 261.06 16.635 238.42 222.73 100.20 240.77 11.903 183.42
2 235.25 221.22 30.510 350.86 215.28 342.62 34.68
3 11.89 240.47 12.33 12.297 320.71 11.75
4 11.66 240.80 6.091 27.058 232.78
5 223.12 265.96 240.72 308.87
6 103.96 217.12 111.86
7 261.23 241.05
8 34.68
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Fig. 3. The FVMM (H = 1, 2, 3, 4, 5, 6. 7 and 8) for wind direction in Mersing.
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Fig. 4. (a) R2 value for each fitted FVMM model. (b) Circular density plot for the FVMM (H = 6) model at the Mersing station.
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at the Mersing station is not distributed uniformly; instead, some
directions are more dominant than others. Using the same proce-
dure, the most suitable mixture distributions of the wind direc-
tions for the other stations have been determined. Table 5 shows
the values derived based on the R2 coefficient for each station.
From Table 5, it can be observed that increasing the number of von
Mises components in the mixture distribution will increase the
value of the R2 coefficient, which indicates a better fit to the data.
Table 6 shows the results of the MAPE analysis for a better compar-
ison with the R2 values for each station.



Table 5
Evaluating the goodness-of-fit for the finite mixture of von Mises distributions based on the R2 coefficient.

Stations R2 value (H = 1) R2 value (H = 2) R2 value (H = 3) R2 value (H = 4) R2 value (H = 5) R2 value (H = 6) R2 value (H = 7) R2 value (H = 8)

K.Terengganu 0.917277 0.996750 0.996326 0.997213 0.997039 0.998149 0.998262 0.997443
Malacca 0.931651 0.997128 0.997286 0.997442 0.995389 0.995614 0.995971 0.995984
Bayan Lepas 0.936980 0.983166 0.985322 0.990281 0.991268 0.999286 0.999188 0.999261
Ipoh 0.944612 0.997505 0.998112 0.999776 0.999750 0.999784 0.999878 0.999690
Kota Bahru 0.925208 0.980947 0.991921 0.998010 0.998242 0.998783 0.999412 0.999136
Balok Baru 0.986861 0.987625 0.992229 0.999880 0.999665 0.999837 0.999888 0.999943
Perai 0.945639 0.990890 0.998476 0.999446 0.999918 0.999865 0.999956 0.999946
Kangar 0.939972 0.999397 0.999760 0.999861 0.999397 0.999852 0.999964 0.999890

Table 6
Evaluating the goodness-of-fit for the finite mixture of von Mises distributions based on the MAPE.

Stations MAPE (H = 1) MAPE (H = 2) MAPE (H = 3) MAPE (H = 4) MAPE (H = 5) MAPE (H = 6) MAPE (H = 7) MAPE (H = 8)

Mersing 6.482 3.142 3.211 3.138 2.112 2.005 2.016 2.021
K.Terengganu 7.327 2.169 2.113 2.071 1.662 1.636 1.734 1.726
Malacca 5.221 2.455 2.119 2.168 2.142 2.114 2.103 2.106
Bayan Lepas 9.322 3.652 3.568 3.414 3.417 2.411 2.383 2.387
Ipoh 6.265 3.433 3.242 3.324 2.770 2.351 2.127 2.134
Kota Bahru 9.696 6.248 3.925 2.898 2.242 2.191 1.211 1.131
Balok Baru 7.822 4.103 2.671 1.912 2.110 1.658 1.666 1.665
Perai 8.676 3.142 2.882 2.860 2.814 2.232 2.044 1.931
Kangar 6.320 1.572 1.771 1.719 1.711 1.715 1.658 1.192

Fig. 5. The FVMMs for wind directions in Bayan Lepas (H = 6), Balok Baru (H = 4), Perai (H = 3) and Kangar (H = 2).
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Fig. 6. The FVMM circular plots for Bayan Lepas (H = 6), Balok Baru (H = 4), Perai (H = 3) and Kangar (H = 2).
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The results for the MAPE analysis are show in Table 6, in which
a small value of the MAPE indicates a FVMM that fits the data well.
That MAPE analysis leads to a conclusion similar to that of the R2

analysis for each station. By increasing the number of components
of the FVMM model for each station, the value of the MAPE for
model fitting decreases. The decreasing value of the MAPE for each
particular model indicates a model fit that is more precise, partic-
ularly in terms of the modality of the histogram data. Thus, based
on the results in Tables 5 and 6, we conclude that the most suitable
model for the wind direction for the Bayan Lepas station is FVMM
with H = 6 components, Kota Bahru and Balok Baru with H = 4
components, Perai with H = 3 components and for other stations,
with H = 2 components. Based on the number of suitable mixture
components, the fitted von Mises mixture distributions and the cir-
cular density plots for several selected stations are show in Figs. 5
and 6. From Figs. 5 and 6, the circular plots for the Bayan Lepas and
Perai stations show that most of the wind was blowing from the
north and the south–south–west, with the most prominent
wind directions within 340–24� and 200–250�. For the Balok Baru
station, the circular plot shows that the most dominant wind
directions are the north (340–45�), the east–south–east to south–
south–east (120–160�) and the south–south–west to west–
north–west (200–300�). Alternatively, for the Kangar station, the
circular plot clearly shows that the wind blows most prominently
in the north to northeast direction (0–50�). Thus, knowing the most
prominent direction of the wind blows for a region contributes
significant information to the process of planning or forecasting
for wind energy generation, air pollution assessment, climate
change, the construction sector, the agricultural sector, maritime
activities, meteorology and many more. In wind energy evaluation
in particular, information regarding the model and the prominent
wind direction will enable wind turbines to be positioned in such
a way as to maximize the captured energy.

6. Conclusions

Our study showed that finite von Mises mixture distributions
with H numbers of components are adequate for describing the
distributions of wind directions for the wind stations studied. This
conclusion was also supported by R2 coefficients MAPE analysis.
However, by plotting the model in a circular plot, it is clear that
some directions of wind blows are more dominant compared to
other directions. Based on our results, we suggest that a more com-
prehensive analysis involving more stations be conducted in the
future to obtain a better understanding of wind directions as well
as the characteristics of wind regimes and energy potential in
Malaysia. Thus, more efforts must be made to identify suitable
locations before erecting wind turbines.
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