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Abstract

A finite mixture model of continuous variable probability is used in this paper to represent the distribution of directional wind speed.
The model is comprised of a finite mixture of von Mises (vM-pdf) distributions.

The parameters of the model are estimated using the least squares method. The range of integration to compute the mean angle and
the standard deviation of wind direction is adjusted to minimum variance requirements. The suitability of the distributions is judged
from the coefficient of determination R2. The model is applied in this paper to wind direction data recorded at several weather stations
located in the Canary Islands (Spain). The conclusion reached is that the mixture distribution used in this paper provides a very flexible
model for wind direction studies and can be applied in a widespread manner to represent the wind direction regimes in zones with several
modes or prevailing wind directions. In the case of the Canary Islands, mixtures of two vM-pdfs provide better fits in all the cases ana-
lysed than those obtained with the models proposed in the specialised literature on wind energy. The conclusion is also drawn that when
the number of components N of the mixture distribution increases, the value of R2 increases. However, the variations in R2 are not sig-
nificant for values of N greater than six.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In wind energy analysis, the use of continuous probabil-
ity density functions (pdf) is common [1–4]. However, dis-
crete models are usually employed in the analysis of
directional wind speed [5–9]. These models normally clas-
sify the wind speed directions into sectors or bins.1

In the specialised literature on wind energy and other
renewable energy sources, the only continuous models to
which we have reference are those proposed by Smith
[10–12] and McWilliams et al. [13,14]. The horizontal wind
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1 Wind directions are often recorded to the nearest 8 or 16 compass
points.
direction h is an angular variable with a period of 360�, so
these authors use an offset normal distribution (or angular
Gaussian or projected normal distribution). The offset nor-
mal models derive from a bivariate normal distribution,
whose variables are the horizontal Cartesian components
of the wind speed, to deduce a wind direction distribution
law. Smith [10–12] takes into account the existing correla-
tion between the two horizontal wind components. The
model of McWilliams et al. [13,14] is derived from the
assumption that the wind speed component along the
prevailing wind direction is normally distributed with
non-zero mean and a given variance, while the wind speed
component along a direction orthogonal to it is indepen-
dent and normally distributed with zero mean and the same
variance. That is to say, as indicated by Weber [15], we are
dealing with an isotropic Gaussian model.
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A large number of studies have been published that pro-
pose the use, in various fields of science, of a variety of pdfs
to describe frequency distributions of circular or angular
variables [16–18]. Nevertheless, most pdfs are symmetric
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and unimodal, with the von Mises (or circular normal)
distribution being the most commonly used circular
distribution.

We use in this paper a continuous variable probability
model to represent distributions of directional wind speed,
irrespective of the number of modes or prevailing wind
speeds. The model is comprised of a finite mixture of von
Mises distributions (vM-pdf). The parameters of the mod-
els are estimated using the least squares method [19], which
is resolved in this paper using the Levenberg–Marquardt
algorithm [20]. The range of integration to compute the
mean angle and standard deviation of the wind direction
is adjusted to minimum variance requirements. The suit-
ability of the distributions is judged from the coefficient
of determination R2 [20]. A comparison is made between
Smith’s model [10–12] and the proposed mixture distribu-
tions. This comparison is based on an analysis of the level
of fit to the cumulative frequencies of hourly wind direc-
tions recorded at two weather stations located in the Can-
ary Islands (Spain).
2. Models

2.1. Smith’s model

Smith [10,11] uses the bivariate Gaussian distribution
f(vx,vy) of the horizontal wind velocity components vx

and vy. Eq. (1)
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�vx and �vy are the sample mean components, Eq. (3); rx and
ry are the standard deviations of vx and vy, respectively, Eq.
(4) and q is the correlation coefficient, Eq. (5). n is the num-
ber of sample data.
To deduce the distribution law of the wind direction h,
Smith [10,11] converts (Eq. (1)) to polar coordinates, Eq.
(6)
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2.2. von Mises mixture model

The proposed continuous probability model mvM(h) is
comprised of a sum of N von Mises probability densities
vMj(h), (Eq. (11))

mvMðhÞ ¼
XN

j¼1

xjvMjðhÞ ð11Þ

where the xj are nonnegative quantities that sum to one
[21,22]; that is, (Eq. (12))

0 6 xj 6 1 ðj ¼ 1; . . . ;NÞ and
XN

j¼1

xj ¼ 1 ð12Þ

A random variable h has a von Mises distribution, vM-pdf,
if its probability density function is defined by Eq. (13) [17]



Fig. 1. Location of the weather stations used.
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where jj P 0 and 0 6 lj < 2p are parameters. The distri-
bution is unimodal and is symmetrical about h = lj. In
this paper, the angle corresponding to the northerly direc-
tion2 is taken as angle 0�. The parameter lj is the mean
direction and the parameter jj is known as the concentra-
tion parameter. Here, I0(jj) is the modified Bessel function
of the first kind and order zero [23] and is given by Eq.
(14)
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The distribution law mvM(h), given by Eq. (11), can be
numerically integrated [17] between two given values of h
to obtain the probability that the wind direction is found
within a particular angular sector. The cumulative distribu-
tion function of the mixture (MvM-cdf) is given by Eq.
(15), which has to be evaluated numerically [17]
2 In meteorology, the angle is measured clockwise from the north.
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3. Estimation of the parameters of the mixture models

Various methods can be used to estimate the 3N param-
eters on which the mixture of N vM-pdfs depends [24]. In
this paper, the least squares (LS) method has been used.
In the LS method, the 3N unknown values of the parame-
ters can be estimated by looking for the numerical values of
the parameters that minimise the sum of the squares of the
deviations between the experimental data and those
obtained with the model under linear inequality con-
straints, Eq. (16). In this paper, the LS method is applied
to the cumulative distribution function Eq. (15) with lj,
jj and xj (j = 1,. . .,N) as the unknown parameters. P is a
vector that contains the experimental cumulative relative
frequencies function obtained from a sample of nobserva-
tions, hi(i = 1,. . .,n). In other words, if the observed wind
direction values are grouped into T(T P N) wind direction
sectors3 0� � h1, h1 � h2,. . .,hT�1 � hT (hT = 360�) and to
each sector is assigned its relative frequency of occurrence
3 37 sectors have been used in this paper (T = 37).



Fig. 2. Coefficient of determination as function of the number of
components of the mixture distribution at Amagro station.

Fig. 3. Coefficient of determination as function of the number of
components of the mixture distribution at Gando station.
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fr1, fr2,. . .,frT, then the cumulative frequencies will be given
by: P1 = fr1,P2 = P1 + fr2,. . .,PT = PT�1 + frT
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Inequality constraints jj P 0; 0 6 lj < 2p; 0 6 xj 6

1;
PN

j¼1xj ¼ 1.
The Levenberg–Marquardt algorithm4 (LMA) [20] has

been used to solve Eq. (16).
The nonlinear programming technique used requires a

starting point or base point.5 Good starting values will
often allow an iterative technique to converge to a solution
much faster than would otherwise be possible.6 In order to
determine the initial values of the 3N parameters, the
observed wind direction values are grouped into N wind
directional sectors 0� � h 01, h 01 � h 02, . . . ,h 0N�1 � h 0N
(h 0N = 360 0) and to each sector is assigned its relative fre-
quency of occurrence fr 01,fr 02,. . .,fr 0N. Then, the coefficients
lj are estimated with Eq. (17)
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where �sj and �cj are given by the expressions, Eq. (18))
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nj is the number of directional wind speed data pertaining
to sector j. The coefficients jj are obtained as the solution
of Eq. (19) [16]
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A(jj) is the ratio of two Bessel functions: I0 (jj), Eq. (14),
and I1(jj) Æ I1(jj) is the modified Bessel function of the first
kind and order one, (Eq. (20))
4 The Mathcad� Software 2001i programme of MathSoft Engineering
and Education, Inc [25] is used to find the values of the 3N parameters.

5 All the iterative procedures require initial values of the parameters to
be estimated.

6 However, in many cases, the LMA finds a solution even if it starts very
far from the final minimum.
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where C is the gamma function [23]. A(jj) is a strictly
monotonic increasing function of jj, and so, to resolve
Eq. (19), in this paper, we propose to resolve the following
approximate equation7, (Eq. (21))
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4. Test of fit used

In this paper, we use the coefficient of determination
(R2) [16], Eq. (22), to estimate the degree of fit of the cumu-
7 This equation has a coefficient of determination of 0.999996.



Fig. 4. Cumulative frequencies of Smith’s model and of the model proposed in this paper for the different weather stations and monthly intervals
considered.
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lative sample distributions and the cumulative distribution
functions

R2 ¼ 1�

PT
k¼1

ðP k �MGkÞ2

PT
k¼1

ðP k �MGÞ2
ð22Þ

where MGk are the values of the theoretical cumulative rel-
ative frequencies and MG is the mean of the MGk values.
The value of R2 varies between 0 and 1. The higher R2 is,
the better is the fit.
5. Estimation of mean and standard deviation of wind

direction

Since the horizontal wind direction is a circular variable,
its mean lh and standard deviation rh cannot be directly
estimated by on line methods [15,18]. If we try to use
expressions similar to those used for linear variables, the
conclusion is reached that these expressions depend
strongly on the position of the lower bound hl of the inter-
val of integration [15], (Eqs. (23) and (24))
lhðhlÞ ¼
Z hlþ2p

hl

hgðhÞdh ð23Þ

rhðhlÞ ¼
Z hlþ2p

hl

h� lhðhlÞ½ �2gðhÞdh


 �1
2

ð24Þ

where g(h) is the pdf.
The value of hl can be obtained by establishing the con-

dition that the standard deviation, defined by Eq. (24), is
minimal. Then, the valid value of hl is that obtained when
setting the derivative of the standard deviation with respect
to hl, Eq. (25), equal to zero and requiring the second deriv-
ative of the standard deviation with respect to hl be positive

orhðhlÞ
ohl

¼ 0! pþ hl � lh hlð Þ½ �gðhlÞ ¼ 0 ð25Þ

When hl has been determined, the mean and standard devi-
ation can be calculated through Eqs. (23) and (24),
respectively.

6. Meteorological data used

In order to determine the flexibility of the proposed
model to represent different distributions of directional



Fig. 5. Frequency histograms of wind directions at Amagro station: (a) months of interval I, (b) months of interval S.
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wind speed, a study was conducted of samples recorded at
different anemometer stations located in the Canarian
Archipelago.8 These stations have been installed in areas
suitable for development of large scale exploitation of wind
energy [26], and have, thus, avoided terrain of complex
topography. However, the effect of the sea breezes in cer-
tain areas of the islands means that there are different wind
8 The Canarian Archipelago is located northwest of the African
continent, between latitude 27�37 0 to 29�250 north (subtropical position)
and longitude 13�20 0 to 18�10 0 west of Greenwich. The Canarian
Archipelago is approximately 1000 km from the Spanish mainland coast,
and the closest and furthest distances from the African coast are 100 km
and 500 km, respectively.
speed distributions for the same island [3,24]. Even so,
there are no significant differences between most of the sta-
tions with respect to the frequency histograms of the
observed wind speed directions. Therefore, two stations
have been selected that are representative of the different
wind direction distributions in the island of Gran Canaria,9

Fig. 1. For the station called Amagro [3], located in the
9 The island of Gran Canaria, located in the centre of the Archipelago, is
almost circular in shape, with a width of 47 km and a length of 55 km. It is
a large rocky massif which peaks near its geographical centre at an
approximate height of 2000 m. The surface area of the island is some
1532 km2.



Fig. 6. Frequency histograms of wind directions at Gando station: (a) months of interval I, (b) months of interval S.

Table 1
Numerical values of the parameters of the mvM-pdfs at Amagro in different seasonal periods

j Autumn and Winter j Spring and Summer

N = 4 N = 2 N = 5 N = 2

lj jj xj lj jj xj lj jj xj lj jj xj

rad – – rad – – rad – – rad – –

1 0.732 2.796 0.106 1.385 6.839 0.735 1 1.182 7.406 0.359 1.283 24.406 0.741
2 1.455 12.067 0.577 4.313 1.617 0.265 2 1.327 40.284 0.51 1.564 0.847 0.259
3 3.892 1.034 0.189 3 2.97 5.106 0.079
4 4.352 30.464 0.074 4 4.644 5.269 0.029

5 6.271 16.656 0.024
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Table 2
Numerical values of the parameters of the mvM-pdfs at Gando in different seasonal periods

j Autumn and Winter j Spring and Summer

N = 6 N = 2 N = 5 N = 2

lj jj xj lj jj xj lj jj xj lj jj xj

rad – – rad – – rad – – rad – –

1 0 7.817 0.366 0.29 7.512 0.579 1 0.299 34.416 0.86 0.312 30.533 0.899
2 0.357 51.813 0.209 5.021 0.381 0.421 2 0.747 144.385 0.045 0.631 0.578 0.101
3 0.758 53.947 0.086 3 1.004 3.002 0.027
4 1.299 4.928 0.093 4 3.081 44.976 0.013
5 3.512 3.386 0.149 5 5.673 1.163 0.055
6 5.11 14.489 0.097
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north, mean hourly wind direction data from 7 years
(1997–1999, 2001–2003, 2005) have been used . For the sta-
tion called Gando [3], located in the east, data have been
used from 4 years (2001–2002, 2004–2005). All the wind
direction records were taken at a height of 10 m above
ground level.

Because of its latitudinal situation and the proximity of
the anticyclone of the Azores, the Canarian Archipelago is
affected almost all year round by the northeast trade winds.
During summer and much of spring, the frequency of the
trade winds regime is very high, from 90% to 95% of the
time during summer,10 though in winter,11 its frequency
drops to about 50%.

In addition to the trade winds, other winds blow in the
Archipelago, not constantly but with a certain local regu-
larity. These include notably the Saharan winds of south-
erly and easterly components, which usually make their
appearance in autumn and spring, and the tropical winds
of southwesterly and westerly components, which blow in
winter periods especially.

As the directional wind speed in the Canarian Archipel-
ago has a seasonal behaviour, the model proposed will be
applied to data recorded at the two previously mentioned
stations and for the following two monthly intervals: win-
ter and autumn months (January–March and October–
December), which we will call Interval I, and spring and
summer months (April–September), which we will call
Interval S. In Fig. 1, we can see the horizontal components
vx and vy of the wind speed at the two stations under study
for both Interval I and Interval S.

7. Analysis of results

Fig. 2 shows, for the case of Amagro, the values
obtained for the coefficient of determination R2 as a func-
tion of the number N of vM-pdfs which comprises the mix-
ture distribution. This relation is shown for the months of
10 In summer, the anticyclone is situated further from the Canary Islands,
in the Azores, and, thus, the action of the trade winds is more intense.
11 In winter, the nucleus of the anticlone is found very near to the Canary

Islands, in Madeira, and so, the action of the trade winds is less important.
Interval I and Interval S. Fig. 3 is a similar representation
for the Gando station.

It can be observed from Figs. 2 and 3 that, indepen-
dently of the type of month interval considered, when
increasing the number of components N of the mixture dis-
tribution, the value of the coefficient of determination R2

increases. However, the variations in R2 are not pro-
nounced for values of N greater than six.

It can also be seen in these figures that mixtures of two
vM-pdfs provide better fits in all the cases analysed than
those obtained with the models proposed by Smith
[10,11] in the specialised literature on wind energy. Despite
this, the model proposed by Smith [10,11] can provide an
acceptable visual fit in those periods where there is a single
easily observable mode (Fig. 4). However, it should be
pointed out that this model requires the use of wind speed
and wind direction data, while the model proposed in this
paper requires only the use of wind direction data.

Fig. 5 shows the wind direction frequency histograms
for the Amagro station during the interval I months
(Fig. 5a) and the interval S months (Fig. 5b). Fig. 6 shows
the corresponding histograms for the Gando station.

For purposes of comparison, two mvM-pdfs are pre-
sented in both Figs. 5 and 6. The number of components
N of one of the distributions has been chosen with the cri-
terion that higher values of it do not entail appreciable
increases of R2. The number of components of the other
distribution is the minimum to make a mixture distribu-
tion, that is N = 2.

It can be seen in Figs. 5b and 6b that in the interval S
months, due to the existence of just one clearly prevailing
wind direction (a single easily observable mode), the use
of a mvM-pdf with N = 2 at Amagro (Table 1) and at Gan-
do (Table 2) is sufficient to achieve a significant visual fit.
With the use of a mvM-pdf with N = 5, values of R2 are
achieved very close to 0.9999.

However, in Figs. 5a and 6a, which represent the inter-
val I months, due to the influence of various wind direc-
tions, mvM-pdfs with N = 2 present a poorer visual fit.
To achieve values of R2 close to 0.9999, mvM-pdfs with
N = 4 are required at Amagro (Table 1) with two modes
or prevailing wind directions, and with N = 6 at Gando
(Table 2), which has more modes or prevailing wind



Fig. 7. Lower bound of the range of integration (a), angular standard
deviation (b) and mean direction (c), as a function of the number of
components of the mixture, at Amagro station.

Fig. 8. Lower bound of the range of integrations (a), angular standard
deviation (b) and mean direction (c), as a function of the number of
components of the mixture, at Gando station.
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directions. It should be pointed out that although these
mixed distributions with several components enrich the
modelling and enable high degrees of fits, they have the
added complication of an increase in the number of param-
eters involved.
Fig. 7 shows, for Amagro, the relation between the num-
ber of components Nof the mixture distribution and the
lower angle of the range of integration (Fig. 7a), the stan-
dard deviation of the wind direction (Fig. 7b) and its mean
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angle (Fig. 7c). Fig. 8 is a similar representation for Gando
station. The method explained in Section 5 was used to
make these representations, and as an example (Fig. 9),
the case of Gando is shown for the months of interval I
and for N = 6. In all the cases analysed, we have found,
as shown in Fig. 9, a sole lower bound value of integration
that provides the minimum standard deviation and, conse-
quently, a sole value of the mean angle of wind direction.

It can be seen from Figs. 7 and 8 that at the lower angles
of the range of integration, the angular standard deviation
and the mean angle vary slightly with N, mainly for values
of N greater than three. However, for all values of N, there
are notable discrepancies existing between the angular
Fig. 9. Derivative of the standard deviation with respect to the lower
bound of the range of integration (a), standard deviation as a function of
the lower bound of the interval of integration (b) and mean direction as a
function of the lower bound of the interval of integration (c), for Gando
station in the months interval I.
standard deviations and the mean angles estimated through
the use of a range of integration that is adjusted to mini-
mum variance requirements and those estimated without
taking into account this range of integration. This shows
that the approach made by McWilliams and Sprevak [14]
was incorrect when they calculated the moments of the
angles without considering the range of integration
adjusted to minimum variance requirements.
8. Conclusions

The conclusion reached is that the mvM-pdfs presented
in this paper provide a very flexible model for wind speed
direction studies and can be applied in a widespread man-
ner to represent the wind direction regimes in zones with
one or several prevailing wind directions.

As a result of the application of the mixture model pro-
posed in this paper to the data for wind direction recorded
at two weather stations in the Canarian Archipelago, the
following conclusions are drawn: (a) independently of the
type of month interval considered, when increasing
the number of components N of the mixture distribution,
the value of the coefficient of determination R2 increases.
However, the variations in R2 are not pronounced for val-
ues of N greater than six; (b) two vM-pdfs provide better fits
in all the cases analysed than those obtained with the mod-
els proposed by Smith [10,11] in the specialised literature on
wind energy; (c) there are notable discrepancies existing
between the angular standard deviations and the mean
angles estimated through the use of a range of integration
that is adjusted to minimum variance requirements and
those estimated without taking into account this range of
integration.
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