Science of Computer Programming 80 (2014) 65-90

Contents lists available at ScienceDirect Science of Computer
rogramming

Science of Computer Programming |

journal homepage: www.elsevier.com/locate/scico

An object-oriented parallel programming language for @CmsMark
distributed-memory parallel computing platforms

Eduardo Gurgel Pinho, Francisco Heron de Carvalho Junior*

Mestrado e Doutorado em Ciéncia da Computagdo, Universidade Federal do Ceard, Brazil

HIGHLIGHTS

The PObC++ language implements the concept of Object-Oriented Parallel Programming (OOPP).
OOPP reconciles distributed-memory parallel programming with OO programming principles.
OOPP separates concerns about inter-object and inter-process communication.

OOPP makes it possible the encapsulation of distributed-memory parallel computations in objects.
Performance of PObC++ programs is almost similar to the performance of C++/MPI programs.

ARTICLE INFO ABSTRACT
Article history: In object-oriented programming (OOP) languages, the ability to encapsulate software
Received 6 March 2012 concerns of the dominant decomposition in objects is the key to reaching high modularity

gg‘]:ezi"e‘j in revised form 12 November and loss of complexity in large scale designs. However, distributed-memory parallelism

tends to break modularity, encapsulation, and the functional independence of objects, since
Accepted 23 March 2013 . A . . L .
Available online 2 April 2013 parallel computations cannot be encapsulated in individual objects, which reside in a single
address space. For reconciling object-orientation and distributed-memory parallelism, this
paper introduces OOPP (Object-Oriented Parallel Programming), a style of OOP where

Keywords:

Ob)j{ect—oriented programming languages objects are distributed by default. As an extension of C++, a widespread language in HPC,
Parallel programming languages the PObC++ language has been designed and prototyped, incorporating the ideas of OOPP.
Parallel programming techniques © 2013 Elsevier B.V. All rights reserved.

High performance computing

1. Introduction

The better cost-benefit of parallel computing platforms for High Performance Computing (HPC),! due to the success of off-
the-shelf distributed-memory parallel computing platforms, such as Clusters [1] and Grids [2], has motivated the emergence
of new classes of applications from computational sciences and engineering. Besides high performance requirements,
these applications introduce stronger requirements of modularity, abstraction, safety and productivity for the existing
parallel programming tools [3]. Unfortunately, parallel programming is still hard to incorporate into the usual large scale
software development platforms that may be developed to deal with such kinds of requirements [4]. Also, automatic
parallelization is useful only in restricted contexts, such as in scientific computing libraries [5]. Skeletal programming
[6], a promising alternative for high-level parallel programming, has not achieved the acceptance expected [7]. These
days, libraries of message-passing subroutines that conform to the MPI (Message Passing Interface) standard [8] are

* Corresponding author. Tel.: +55 8530880021; fax: +55 8533669837.
E-mail addresses: edgurgel@lia.ufc.br (E.G. Pinho), carvalho.heron@gmail.com, heron@lia.ufc.br (F.H. de Carvalho Junior).
1 HPC is here defined as a domain of applications with stronger requirements of computation performance, to achieve a result in a minimal space of
time, and/or memory, which surpasses the capacity of usual individual computers. Traditionally, they come from engineering and computational sciences,
but several examples have emerged from corporative domains.

0167-6423/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scic0.2013.03.014

http://dx.doi.org/10.1016/j.scico.2013.03.014
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.03.014&domain=pdf
mailto:edgurgel@lia.ufc.br
mailto:carvalho.heron@gmail.com
mailto:heron@lia.ufc.br
http://dx.doi.org/10.1016/j.scico.2013.03.014

66 E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

widely adopted by parallel programmers, offering expressiveness, portability and efficiency across a wide range of parallel
computing platforms. However, they still present a low level of abstraction and modularity in dealing with the requirements
of the emerging large scale applications in HPC domains.

In the context of corporative applications, object-oriented programming (OOP) has been consolidated as the main
programming paradigm to promote development productivity and software quality. Object-orientation is the result of
two decades of research in programming tools and techniques motivated by the need to deal with the increasing levels
of software complexity since the software crisis context of the 1960s [9]. Many programming languages have been designed
to support OOP, such as: C++, Java, C#, SmallTalk, Ruby, Objective-C, and so on. Despite their success in the software industry,
object-oriented languages are not popular in HPC, dominated by Fortran and C, as a consequence of the high level of
abstraction and modularity offered by these languages. When parallelism comes onto the scene, the situation is worse, due
to the lack of safe ways to incorporate explicit message-passing parallelism to these languages without breaking important
principles, such as the functional independence of objects and their encapsulation.

This paper presents PObC++ (Parallel Object C++), a new parallel extension to C++ which implements the ideas behind
OOPP (Object Oriented Parallel Programming), a style of parallel programming where objects are intrinsically parallel, so
deployed in a set of nodes of a distributed-memory parallel computer, and communication is distinguished in two layers:
intra-object communication, for common process interaction by message-passing, and inter-object communication, for usual
object coordination by method invocations. In OOPP, objects are called p-objects (parallel objects). The decision to support
C++ comes from the wide acceptance of C++ in HPC. However, OOPP might be supported by other OO languages, such as
Java and C#. The main premise that guides the design of PObC++ is the preservation of basic object-orientation principles
while introducing a style of programming based on message-passing, inheriting the well-known programming practices
using MPI (Message Passing Interface) [8].

Section 2 discusses the current context regarding message-passing parallel programming and object-oriented
programming, as well as their integration. Section 3 presents the main premises and concepts behind OOPP, showing how
it is supported by PObC++. This section ends off by presenting the overall architecture of the current prototype of PObC++
compiler. Section 4 presents three case studies of PObC++ programming, aimed at giving evidence of the expressiveness,
programming productivity, and the performance of OOPP. Finally, Section 5 will present our conclusions, describe ongoing
research, and plant ideas for further research initiatives.

2. Context and contributions

This work attempts to bring together two widely accepted programming techniques in a coherent way:

e Message-Passing (MP), intended for HPC applications, which have stronger performance requirements as the main driving
force, generally found in scientific and engineering domains;

e Object-Orientation (00), intended for large-scale applications, which have stronger productivity requirements for
development and maintenance, generally found in corporative domains.

The following sections review concepts of the two above programming techniques that are important in the context of
this work, also providing a discussion about the strategies that have been applied for their integration (related works).

2.1. Parallel programming and message passing with MPI

MPI is a standard specification for libraries of subroutines for message-passing parallel programming that are portable
across distributed-memory parallel computing platforms [8]. MPI was developed in the mid 1990s by a consortium inte-
grating representatives from academia and industry, interested in a message-passing interface that could be implemented
efficiently in virtually any distributed parallel computer architecture, replacing the myriad of proprietary interfaces devel-
oped at that time by supercomputer vendors for the specific features and needs of their machines. It was observed that such
diversity results in higher costs for users of high-end parallel computers, due to the poor portability of their applications
between architectures from distinct vendors. Also, the lack of standard practices breaks the technical evolution and dissem-
ination of computer architectures and programming techniques for parallel computing. MPI was initially proposed as a kind
of parallel programming “assembly”, on top of which specific purpose, higher-level parallel programming interfaces could
be developed, including parallel versions of successful libraries of subroutines for scientific computing and engineering.
However, MPI is now mostly used to develop final applications. The MPI specification is now maintained by the MPI Forum
(http://www.mpi-forum-org).

MPI is now the main representative of message-passing parallel programming. Perhaps it is the only parallel
programming interface, both portable and general purpose, to efficiently exploit the performance of high-end distributed
parallel computing platforms. Since the end of the 1990s, any new installed cluster or MPP? has supported some
implementation of MPI. In fact, most vendors of parallel computers adopt MPI as their main programming interface, offering

2 Massive parallel processor.

http://www.mpi-forum-org
http://www.mpi-forum-org
http://www.mpi-forum-org

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90 67

#include "mpi.h"

void main(int argc, char** argv)
{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

parallel 10 point-to-point communication
! communication scope data types
! computation one-sided communication
I topology definition collective communication

MPI_Finalize();

Fig. 1. MPI program.

highly optimized implementations for their architectures. MPI is also considered to be one of the main reasons for the
increase in popularity of cluster computing, due to the availability of efficient open-source implementations for Linux-based
platforms. MPI has become popular even in shared memory parallel computers, since its wide acceptance among parallel
programmers is seen as a way of reducing the learning curve of parallel programming for these architectures.

Many free implementations of MPI, most of them open-source, have been developed, supporting a wide range of
computer platforms, such as MPICH, OpenMPI, LAM-MPI, and MSMPI. Also, unofficial versions of the MPI specification in
languages not supported by the official specification have also been implemented, such as Boost.MPI (C++), MPL.NET (C#),
and JavaMPI (Java).

Two versions of the MPI specification have been proposed by the MPI forum, officially specified in Fortran and C: MPI-1
and MPI-2. MPI-2 extends MPI-1 with many innovations proposed by the community of MPI users. Hundreds of subroutines
are supported, with various purposes, enumerated below:

point-to-point communication (MPI-1);
collective communication (MPI-1);
communication scopes (MPI-1);
process topologies (MPI-1);

data types (MPI-1);

e one-sided communication (MPI-2);

e dynamic process creation (MPI-2);

e parallel input and output (MPI-2).

For the purposes of this paper, it is relevant to provide only an overview of the MPI programming model. A complete
description of their subroutines can be obtained in the official specification document, available at the MPI Forum website.
There are also many tutorials publicly available on the web.

2.1.1. MPI programming model

In the original specification, an MPI program is a single program that is executed in each processing node of the
parallel computer. This is known as SPMD (Single Program Multiple Data) programming, where processes execute the same
computation either over a subset of a distributed data structure (data parallelism) or applied to different values of input
parameters (parameter sweep). Each process is identified by a distinct rank, an integer varying between 0 and size — 1, where
size denotes the number of processes.

MPI processes can execute distinct computations over different data structures, using ranks to distinguish processes
with different roles. Therefore, MPI implementations also support MPMD (Multiple Program Multiple Data), where the MPI
program comprises many programs representing different kinds of processes.

The overall structure of an MPI source code is illustrated in Fig. 1. The header file “mpi.h” contains the prototypes
of the MPI subroutines, as well as constant definitions and data type declarations. The calls to MPI_Init and MPI_Finalize
must enclose any MPI subroutine call. Respectively, they initialize the MPI environment and free any resource used by
the MPI environment during execution before finish. The calls to MPI_Comm_rank and MPI_Comm_size make possible a
process to request its identification (rank) and for the number of running processes (size), respectively. In parallel programs
where processes need to refer to each other, e.g. processes that call communication subroutines, the values of rank and
size are essential. MPI_COMM_WORLD is a constant of type MPI_Communicator, representing the global communicator
(communication scope), which involves all the running processes.

The code enclosed in the dashed rectangle defines the parallel computation, which involves a sequence of computations
and calls to MPI subroutines. The subroutines that are relevant for the purposes of this paper are highlighted: point-to-

68 E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

MPI_Send
8- & .
MPI_Send MPI_Recv w " copying ¥ pending [
Sender Receiver HE
Application Side Side Application " copying
Buffer Buffer MPIL_Recv d i
copying b MPI_Send
i 3
System o System ¥ copying Y ”
Buffer Buffer + s3nding
5 a pending H copying
ending endin
i & s g MPI_Recv

Fig. 2. MPI point-to-point communication semantics.

point/collective communication and communication scopes. In the following sections, we give a brief overview of these
subsets of subroutines.

2.1.2. Point-to-point communication

The basic point-to-point communication subroutines are MPI_Recv and MPI_Send, through which a sender process
sends a data buffer, including a number of items of a given MPI data type, to a receiver process. Together with MPI_Init,
MPI_Finalize, MPI_Comm_size, and MPI_Comm_rank, they form the basic subset of subroutines of MPI, with expressive power
to develop any parallel program. MPI also offers a comprehensive set of point-to-point communication routines, with various
synchronization semantics.

There are two main communication modes for point-to-point communication subroutines in MPI: blocking and non-
blocking. To understand the semantics of these subroutines, it is important to know some details about how MPI
communication takes place. This is illustrated in Fig. 2. On the left-hand side, the application buffer and the system buffer are
depicted. The application buffer is passed by the programmer to the sending or receiving subroutine (MPI_Send/MPI_Recv),
where the data to be sent or received will be accessible by the program in a contiguous chunk of memory. In fact, it
is accessible by a regular variable of the program, which is convenient for programs that perform computations over
multidimensional arrays (e.g. in scientific computing). The system buffer is an internal buffer where the data from the
application buffer is copied by the receiving operation (sender side) or by the sending operation (receiver side). Thus, it
is not accessible by the program. Inconsistencies may occur if the programmer accesses the application buffer before it is
copied into the system buffer or directly sent to the receiver. On the right-hand side of Fig. 2, the operations performed in a
communication are described, involving the application and system buffers. In the first scenario (top), the send operation is
executed before the receive operation. In the second scenario (bottom), it is the receiver that calls the receiving subroutine
before the sender. The semantics of the various point-to-point communication subroutines of MPI depends on how they
make use of the buffers.

In a blocking communication subroutine, the sender or the receiver returns the control to the caller whenever the access
to the application buffer by the program is safe. In blocking receiving, such a status is reached when the received data has
been copied to the application buffer. In blocking sending, it is reached after sending data has been safely copied to the system
buffer or directly sent to the receiver. Blocking sending has three modes: synchronous (MPI_Ssend), buffered (MPI_Bsend),
and ready (MPI_Rsend). In synchronous blocking sending, there is no system buffer. The data is sent to the receiver directly
from the application buffer. Thus, MPI_Ssend only completes after a matching MPI_Recv has been executed at the receiver
side. In buffered blocking sending, there is a system buffer allocated by the programmer using the MPI_Attach_buffer
subroutine, which must be large enough for storing pending calls to MPI_Bsend. If the buffer is full in a call to MPI_Bsend,
i.e. there are many pending calls, the call behaves like a synchronous blocking sending. In a ready blocking sending, there is
neither a system buffer neither at the receiver side nor at the sender side. Thus, there must be a pending matching call to
MPI_Recv when a MPI_Rsend is called.

In the MPI implementations, MPI_Send is a buffered blocking sending, with a small buffer pre-allocated by the MPI
environment. For this reason, it behaves like synchronous blocking sending for large messages. The official MPI document
does not specify the semantics of MPI_Send to be followed by implementers.

For each blocking subroutine, there is a corresponding non-blocking one, the name of which differs by the prefix “I”
(e.g. MPI_Irecv, MPI_Isend, MPI_Issend, MPI_lbsend, MPI_Irsend). Non-blocking subroutines do not wait until the access
to the application buffer is safe before returning the control to the caller. The control is returned to the caller with a
request handle, a value of type MPI_Request. The communication occurs in the background, making it possible to overlap
useful computation with communication, minimizing synchronization overheads and avoiding certain potential deadlocked
states. The programmer is responsible for taking care of preventing corrupting accesses to the application buffer until the
communication completes. A set of subroutines exists for testing and waiting for the completion of one or more requests
(MPI_Test, MPI_Testall, MPI_Testany, MPI_Testsome, MPI_Wait, MPI_Waitall, MPI_Waitany, MPI_Waitsome). For this, the
programmer must use the request handles returned by the non-blocking communication subroutines to refer to the pending
operations it is interested in synchronizing.

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90 69

2.1.3. Collective communication

MPI supports subroutines that encapsulate communication operations involving many processes, often found in parallel
algorithms. There are operations for disseminating data from one process to the other ones (MPI_Bcast and MPI_Scatter) and
others for collecting data from all the processes to one process (MPI_Gather), possibly executing a reduction operation on
the sets of data received (MPI_Reduce). Also, there are operations where all the involved processes disseminate data to each
other and, as a consequence, must collect (reduce) the data received (MPI_Alltoall, MPI_Allgather, MPI_Allreduce). Some
operations are personalized (MPI_Scatterv, MPI_Alltoallv, MPI_Allgatherv, MPI_Allreducev), which means that the sender
processes have a different piece of data addressed to each other’s process. Prefix operations are also supported (MPI_Scan,
MPI_Reducescan).

2.1.4. Groups and communicators

All the above communication operations execute in the context of a communicator. The most important one is
MPI_COMM_WORLD, which involves all the running processes of the parallel program. By using the abstraction of process
groups, an MPI programmer may create communicators involving arbitrary subsets of processes. Communication scopes has
been originally proposed for avoiding interference between communication operations performed by different subroutines
of parallel scientific libraries, possibly distinct, in message-passing parallel programs.

2.2. Principles of object-oriented languages

Object-orientation is an influential data abstraction mechanism whose basis was introduced in the mid 1960s, with the
Simula’67 programming language [10,11]. Following Simula’67, the most prominent object-oriented language was Smalltalk
[12], developed at Xerox PARC in the 1970s. The designers of Smalltalk adopted the pervasive use of objects as a computation
basis for the language, being the first to coin the term object-oriented programming (OOP). During the 1990s, OOP became
the mainstream in programming, mostly influenced by the rising in popularity of graphical user interfaces (GUI), where
OOP techniques were extensively applied. However, the interest in OOP rapidly surpassed the use in GUI’s, as the software
engineers and programmers recognized the power of OOP principles in dealing with the increasing complexity and scale of
software. Today, the most used OOP languages are C++, Java, and C#.

Modern object-oriented languages are powerful programming artifacts. Often, their rich syntax, complex semantics, and
comprehensive set of libraries hide the essential principles of object-orientation. In this section, we present the essential
characteristics of object-oriented imperative languages, in its pure sense, focusing on the ones that are relevant for the
purposes of this paper.

2.2.1. Objects
In an imperative programming setting, a pure object is a runtime software entity consisting of the following parts:

e astate defined by a set of internal objects called attributes;
e aset of subroutines called methods, which define the set of valid messages the object may accept.

The methods of an object define the object’s valid state transformations, which define the computational meaning of the
object. The signatures of the methods of an object form the object’s interface.

An object-oriented program comprises a set of objects that coordinate their tasks by exchanging messages in the form
of method invocations. From the software architecture point of view, each object addresses a concern in the dominant
decomposition of the application. Thus, coordination of objects results in the implementation of the overall application
concern.

Concerns in software engineering. The different programming paradigms created in the last decades primarily tried to break
the complexity of a problem by recursively dividing it into a set of smaller subproblems that can be easier to be understood
and solved. This is software modularization. From this perspective, a software is recursively broken into a set of software
modules, whose relation and interaction are specified. Each module must address a software concern, which is defined as
a conceptual part of a solution such that the composition of concerns may define the solution needed by the software
[13]. The modularization process based on concerns is called separation of concerns (SoC). The concrete notion of module
in a programming environment depends on the programming paradigm. For example, object-oriented programming uses
objects to describe concerns, whereas functional programming uses functions in a mathematical sense.

2.2.2. Encapsulation
The most primitive principle behind object-oriented programming (OOP) is encapsulation, also called information hiding,
which states that an object which knows the interface of another object does not need to make assumptions about its internal
details to use its functionality. It only needs to concentrate on the interface of the objects they depend on. In fact, an OOP
language statically prevents an object from accessing the internal state of another object, by exposing only its interface.
Encapsulation prevents programmers from concentrating on irrelevant details about the internal structure of a particular
implementation of an object. In fact, the implementation details and attributes of an object may be completely modified

70 E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

without affecting the parts of the software that depend on the object, provided its interface, as well as its behavior, is
preserved. In this sense, encapsulation is an important property of OOP in dealing with software complexity and scale.
More importantly, encapsulation brings to programmers the possibility of working at higher levels of safety and security, by
allowing only essential and valid accesses to be performed on critical subsets of the program state.

2.2.3. Classes

A class is defined as a set of similar objects, presenting a set of similar attributes and methods. Classes may also be
introduced as the programming-time counterparts of objects, often called prototypes or templates, specifying the attributes
and methods that objects instantiated from them must carry at run time.

Let A be a class with a set of attributes « and a set of methods . A parallel programmer may derive a new class from A,
called A’, with a set of attributes &’ and a set of methods 1/, such that « C o’ and u C . This is called inheritance [14]. A
is a superclass (generalization) of A’, whereas A’ is a subclass (specialization) of A. By the substitution principle, an object of
class A’ can be used in a context where an object of class A is required. Thus, in a good design, all the valid internal states
and state transformations of A are also valid in A’. Such safety requirement cannot be enforced by the usual OOP languages.

Inheritance of classes can be single or multiple. In single inheritance, a derived class has exactly one superclass, whereas
in multiple inheritance a class may be derived from a set of superclasses. Modern OOP languages, such as Java and C#, have
abolished multiple inheritance, still supported by C++, by adopting the single inheritance mechanism once supported by
Smalltalk. To deal with use cases of multiple inheritance, Java introduced the notion of interface. An interface declares a set
of methods that must be supported by objects that implement it. Interfaces define a notion of type for objects and classes.

2.2.4. Abstraction
Classes and inheritance bring four important abstraction mechanisms to OOP [14]:

e (lassification/instantiation constitutes the essence of the use of classes. As already defined, classes group objects with
similar structure (methods and attributes). Objects represent instances of classes.

e Aggregation/decomposition comes from the ability to have objects as attributes of other objects. Thus, a concept
represented by an object may be described by their constituent parts, also defined as objects, forming a recursive
hierarchy of objects that represent the structure behind the concept.

e Generalization/specialization comes from inheritance, making it possible to recognize commonalities between different
classes of objects by creating superclasses from them. Such an ability makes possible a kind of polymorphism that is typical
in modern OO languages, where an object reference, or variable, that is typed with a class may refer to an object of any
of its subclasses.

e Grouping/individualization is supported due to the existence of collection classes, which allows for the grouping together
of objects with common interests according to the application needs. With polymorphism, collections of objects of related
classes, by inheritance relations, may be valid.

2.2.5. Modularity

Modularity is a way of managing complexity in software, by promoting the division of large scale and complex systems
into collections of simple and manageable parts. There are some accepted criteria in classifying the level of modularity
achieved by a programming method: decomposability, composability, understandability, continuity, and protection [15].

OOP promotes the organization of the software in classes from which the objects that perform the application will be
instantiated at run time. In fact, classes will be the building blocks of OOP software. In a good design, classes capture simple
and well-defined concepts in the application domain, orchestrating them to perform the application in the form of objects
(decomposability). Classes promote the reuse of software parts, since the concept captured by a class of objects may be
present in several applications (composability). Indeed, abstraction mechanisms makes it possible to reuse only those class
parts that are common between objects in distinct applications. Encapsulation and a high functional independence degree
promote independence between classes, making it possible to understand the meaning of a class without examining the code
of other classes it depends on (understandability). Also, they avoid the propagation of modifications in the requirements of
a given class implementation to other classes (continuity). Finally, exception mechanisms makes it possible to restrict the
scope of the effect of an error condition at runtime (protection).

2.2.6. Functional independence

Functional independence is an important property of objects to be achieved in the design of their classes. It is a measure
of the independence among the objects that constitute the application. It is particularly important for the purposes of this
paper. Functional independence is calculated by two means: cohesion and coupling. The cohesion of a class measures the
degree to which the tasks its objects perform define a meaningful unit. Thus, a highly cohesive class addresses a single and
well-defined concern. The coupling of a class measures its degree of dependency in relation to other classes. Low coupling
means that modifications in a class tend to cause minor effects in other classes they depend on. Also, low coupling minimizes
propagation of errors from defective classes to the classes they depend on. From the discussion above, we may conclude that
functional independence is better as high cohesion and low coupling are achieved.

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90 71

2.3. Parallelism support in object-oriented languages

As a result of the wide acceptance of MPI among parallel programmers in HPC domains, implementations of MPI
for object-oriented languages have been developed. Some of these implementations are simple wrappers for native MPI
implementations [16-18], whereas others adopt an object-oriented style [19-21]. Both approaches present two drawbacks.
First of all, they go against the original MPI designer’s intention to serve as just a portability layer for message-passing in
parallel implementations of specific purpose scientific libraries. Secondly, MPI promotes the decomposition of a program
in the dimension of processes, causing the breaking of concerns in a set of cooperating objects, or classes, increasing their
coupling and, as a consequence, sacrificing functional independence.

Charm++ [22] is a library for message-passing on top of C++, portable across distributed and shared-memory parallel
architectures. A program is built from a set of parallel processes called chares, which can be dynamically created by other
chares. They can communicate via explicit message-passing and share data through special kinds of objects. The placement
of chares is defined by a dynamic load balancing strategy implemented in the run-time system. Chares are special objects,
bringing the drawback of using objects to encapsulate processes instead of concerns.

A common approach, supported by JavaParty [23], ParoC++ [24], POP-C++ [25], relies on deploying objects, representing
processes, across the nodes of the parallel computer, where they can interact through method invocations instead of
message-passing. Indeed, such an approach may be supported by any OO language with some form of remote method
invocation. Despite avoiding the backdoor communication promoted by raw message-passing, method invocations promote
client-server relations between the objects that act as processes, whereas most of the parallel algorithms assume peer-to-
peer relations among processes. For this reason, ParoC++ proposed forms of asynchronous method invocations in order to
improve the programmability of common process interaction patterns. POP-C++ extended ParoC++ for grid computing.

With the advent of virtual execution machines, another common approach is to implement parallel virtual machines,
where parallelism is managed implicitly by the execution environment [26]. However, we argue that such implicit
approaches will never reach the level of performance supported by explicit message-passing in the general case, since
efficient and scalable parallel execution depends on specific features of the architectures and applications, such as the
strategy of distributing the data across nodes of a cluster in order to promote data locality and minimize the amount of
communication.

Another parallel programming model that has been proposed for object-oriented languages is PGAS (Partitioned Global
Address Space), supported by languages like X10 [27], Chapel [28], Fortress [29], and Titanium [30]. Most of these languages
have been developed under the HPCS (High Productivity Computer Systems) program of DARPA [31], since 2002. The
HPCS program has two goals: to boost the performance of parallel computers and increment their usability. In PGAS, the
programmer can work with shared and local variables without explicitly sending and receiving messages. Thus, there is
neither a notion of parallel object nor a notion of message-passing interaction between objects, like in the other approaches
and the approach proposed in this paper. Objects interact through the partitioned address space, despite being placed in
distinct nodes of the parallel computer. Such an approach makes parallel programming easier, but may incur in performance
penalties since memory movements are controlled by the system. Each language has its own way of expressing task and data
parallelism, through different forms, such as: asynchronous method invocation, explicit process spawn, dynamic parallelism
to handle “for loops” and partitioned arrays.

2.4. Contributions

From the above context, the authors argue that attempts to reconcile distributed-memory parallel programming
and object-oriented languages break important object-orientation principles and/or do not reach the level of flexibility,
generality and high performance of parallel programming using the MPI standard. Concerning these problems, this paper
includes the following contributions:

e An alternative perspective of object-oriented programming where objects are parallel by default, called OOPP (Object
Oriented Parallel Programming);

e The design of a language based on OOPP, called PObC++ (Parallel Object C++), demonstrating the viability of OOPP as a
practical model;

e A prototype of PObC++, which may be used to validate OOPP usage and performance;

e A comparison between the performance of a PObC++ program and the performance of its C++/MPI (non-OO) counterpart,
which evidences that object-orientation does not add significant overheads;

e Discussions about programming techniques behind OOPP, using a set of selected case studies.

3. Object-Oriented Parallel Programming (OOPP) and PObC++

We found that the main reason for the difficulties in reconciling object-orientation and distributed-memory parallel
programming lies in the usual practice of mixing concerns and processes in the same dimension of software decomposition
[32]. In distributed-memory parallel programming, concerns that must be implemented by a team of processes (parallel
concerns) are common. Consequently, an individual object, which addresses some application concern, must be distributed,
which means that they must be located at a set of nodes of the parallel computing platform. In the usual practice, an object
is always located in the address space of a single node, and teams of objects are necessary to address parallel concerns.

72 E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

> NN

4y Fuarallel process interaction through message—passing (processes in disjoint address space)

BY PROCESSES BY CONCERNS

N ()

—&— Object interaction through method invocations (objects inside the same address space)

Fig. 3. Process vs. object perspectives.

On the left-hand side of Fig. 3 (“BY PROCESSES”), the common practice of parallel programming in OOP languages is
illustrated, where individual objects execute in a single address space and parallel concerns are implemented by teams of
objects that communicate through either message-passing or remote method invocations. In the latter approach, there is
no clear distinction between messages for parallel interaction and object coordination. Moreover, these kinds of client-
server relations are not appropriate for communication among parallel interacting peers. In the former approach, parallel
interaction is a clandestine form of object coordination, by using some low-level communication library, such as MPI or
Sockets, possibly breaking the encapsulation of objects and reducing their functional independence.

On the right-hand side of Fig. 3 (“BY CONCERNS"), the practice that we argue to be the best suited one for distributed-
memory parallel programming with OOP languages is illustrated. It is the base of the Object-Oriented Parallel Programming
(OOPP), the approach we are proposing. Objects that cooperate to implement a parallel concern now constitute a parallel
object, here referred to as p-object. Each individual object is a unit of the p-object. Application concerns are now encapsulated
in a p-object, where parallel interactions are no longer clandestine. In fact, parallel interaction and object coordination are
distinguished at different hierarchical levels, leading to the concepts of intra-object and inter-object communication. Intra-
object communication may be performed using message-passing, which is better suited for parallel interaction between
peer units, whereas inter-object communication may use local method invocations.

From the above considerations, we argue that a fully concern-centric decomposition approach improves the functional
independence of objects, now parallel objects, by eliminating the additional coupling of objects and classes which result
from a process-centric decomposition approach. We propose a language for OOPP, called PObC++, a parallel extension to
C++, implemented on top of MPI for enabling process creation, communication, and synchronization. C++is adopted because
it is widely accepted and disseminated among parallel programmers due to its high performance, mainly in computational
sciences and engineering. However, the parallel concepts introduced in C++ may be easily introduced to Java or C#, the two
mainstream programming languages in general application domains.

PObC++ supports a parallel programming style inspired by the MPI standard, which has been widely accepted among HPC
programmers since the mid 1990s. It may be distinguished from other object-oriented parallel programming alternatives
in the following aspects:

e objects keep atomicity of concerns, since each unit of a p-object can address the role of a process with respect to a concern
that is implemented in parallel;

e objects send messages to other objects only by usual method invocations, avoiding clandestine communication through
low-level message passing as in existing approaches;

o fully explicit parallelism is supported by means of an explicit notion of process and intra-object message-passing
communication, providing full control over typical parallel programming responsibilities (load balancing, data locality,
and so on).

The following subsections introduce the main concepts and abstractions behind OOPP, using simple examples in PObC++.
PObC++ attempts to reconcile full explicit message-passing parallel programming with object-orientation, by introducing
the smallest possible set of new concepts and abstractions. For this reason, pragmatic decisions have been made for
supporting MPI without breaking the principles behind OOPP. We think that such an approach may lead to a better learning
curve for new users of PObC++. Further works will study how to improve OOPP, making it more attractive to parallel
programmers.

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90 73

(B

- P
processing %

A | C.pm2(...)
node #1 £ e

LD

)
) >
5

S

D

B.pm1(...)

X
359
o
%2
5

o

processing
node #2

C.pm2(...)

o
8L
byt
RS
25
RS
S5tedel

B.pm1(...)|

5

5

&
¢

L7
[
%!

<

S50
XA
KNS

OTET0N
SBUEN
SXLRR)
o,

'I
X
&
&

2505
8358

processing

B.pm1(...)
node #3 >

P

¥

e
22
%
<

::
:‘:
L

processing

C.pm2(...)
node #4 ~ |

!
K

‘ 7
Setidg

LN
s
(R
%

&

—

D.um3(...) - -

3 ® parallel method

D.um4(...) &o——
N4 >

N>

Fig. 4. Parallel and unit method invocations.

;Iass <class_name> class scope

- class attributes

- parallel class method signatures unit sco pe

- parallel class method default implementations

unit <unit_name> {
- unit attributes
- unit methods
- parallel class method implementations

- parallel unit method signatures

- parallel unit method implementations

Fig. 5. Parallel class.

3.1. Parallel objects

A Parallel Object (p-object) is defined by a set of units, each one located at a processing node of a distributed-memory
parallel computer. A p-object is an object in the pure sense of object-oriented programming, addressing some application
concern and communicating with other objects through method invocations. Distinct p-objects of an application may be
located at distinct subsets of processing nodes of the parallel computer, overlapped or disjoint.

The state of a p-object (global state) is defined by a set whose elements are the states of each one of its units (local states).
Local states are defined just as the states of single objects (Section 2.2).

A p-object may accept parallel methods and singleton methods. Singleton methods are accepted by individual units of
the p-object. In turn, a parallel method is accepted by a subset of the units of the p-object. Let A and B be p-objects, such that
units of A, the caller units, performs an invocation to a parallel method m of B, the callee units. Each caller unit of A must
be located at the same processing node of the callee unit of B. In a parallel method invocation, message-passing operations
may be used for synchronization and communication between the callee units of the p-object.

Fig. 4 illustrates parallel method invocations (solid arrows) and singleton method invocations (dashed arrows). The calls
to um1, from A to B, and um2, um3, and um4, from C to D, illustrate singleton method invocations. The p-object A performs
calls to the parallel methods pm1 and pm2, respectively accepted by the p-objects B and C. Notice that both B and C are
located at a subset of the processing nodes where A is located, in such a way that the pairs of units involved in a method
call (a; /b4, az/cz, asz/b,, and a4/c3) are placed in the same processing node. Therefore, method invocations are always
local, involving units of distinct p-objects placed inside the same processing node. This is inter-object communication, which
makes possible coordination between the objects for achieving application concerns. In turn, inter-process communication
is always encapsulated inside a p-object, by message-passing among its units. This is intra-object communication, which aims
to implement inter-process communication patterns of parallel programs.

3.2. Classes of parallel objects

A Parallel Class (p-class) represents a prototype for a set of p-objects with common sets of units, methods and attributes,
distinguished only by their execution state. Fig. 5 illustrates the structure of a parallel class in PObC++, introducing the

74

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

class Hello1 {

/* parallel class method signature x/
public: void sayHello();

unit a {
/% parallel class method implementation =/
void sayHello() {
cout << "Hello ! I am unit a";
}

}

unit b {
/+ parallel class method implementation x/
void sayHello() {
cout << "Hello ! I am unit b";
}

)

parallel unit c {
/% parallel class method implementation =/
void sayHello ()[Communicator comm] {
int rank = comm.getRank();
cout << "Hello ! I am the "
<< rank << "—th unit c"
}
}

parallel unit d {
/* parallel class method implementation x/
void sayHello() {
int rank = comm.getRank();
cout << "Hello ! I am the "
<< rank << "—th unit d";

public:
/* parallel unit method implem. x/
parallel void
sayBye ()[Communicator my_comm] {
int rank = my_comm.getRank();

class Hello2 {
private: int i; // class attribute

/% parallel method with default
implementation outside class x/
public:
void sayHello ();

unit a {
public: double n1; // unit attribute
}

unit b {
private: double n2; // unit attribute
public: double ni; // unit attribute
}

unit c {
public:
double n1; // unit attribute
/% singleton unit method */
int getMy_i() {
return i++;
}

}
}

/* parallel method default implementation x/
void Hello2::sayHello() {
cout << "I am some unit of p—class Hello";

)

/* parallel method implementations x/
void Hello2::b::sayHello() {
cout << "Hello ! I am unit b";

)

cout << "Bye ! I am the " .
" P void Hello2::c::sayHello() {
} << rank << "—th unit d%; cout << "Hello ! I am unit c¢";
} }
}
(a) (b)

Fig. 6. Examples of p-classes.

unit abstraction. Also, it introduces the possible syntactical scopes in a p-class declaration: class scope and unit scope. Fig. 6
exemplifies the PObC++ syntax for p-classes.

Units of a p-class may be singleton units or parallel units. In the instantiation of a p-class, only one instance of a singleton
unit will be launched in a processing node, whereas an arbitrary number of instances of a parallel unit may be launched,
each one in a distinct process node. A reader who is familiar with parallel programming will find that parallel units capture
the essence of SPMD programming.

An attribute may be declared in the unit scope or in the class scope. In the former case, it is called a unit attribute, whose
instance must exist only in the address space of the unit where it is declared. In the latter case, it is called a class attribute,
which must have an independent instance in the address space of each unit of the p-object. In fact, a class attribute is a
syntactic sugar for a unit attribute declared in each unit of the p-object with the same type and name.

Methods may also be declared in the class scope or in the unit scope. In the former case, they are parallel class methods,
which are accepted by all the units of a p-object. In the latter case, they are either singleton unit methods, which are accepted
by individual units, or parallel unit methods, which are accepted by parallel units. Parallel unit methods are declared in the
scope of parallel units using the parallel modifier.

The reader may notice that parallel class methods and parallel unit methods correspond to the parallel methods of p-objects
discussed in Section 3.1, where communication and synchronization between parallel objects takes place. In turn, their
singleton methods relates to the singleton unit methods of PObC++ classes. To enforce these restrictions in programming, only
parallel methods have access to communicators in their scope. A communicator is a special kind of object that provides an
interface for communication and synchronization among units of a p-object in the execution of parallel methods.

An implementation of a parallel class method, possibly distinct, must be provided in the scope of each unit of the
p-class. Alternatively, a default implementation may be provided in the class scope, which may be overridden by specific

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90 75

super class sub class

classA { ... } classA':A ... {... }

unit inheritance [

class inheritance

AN
like C++

unit U_1

unit U_2

unit U_n

el
i

Fig. 7. Inheritance between p-classes.

implementations provided in the scope of one or more units. Default implementations of parallel class methods have
access only to class attributes, whereas methods declared in the unit scope, singleton or parallel, may access class and unit
attributes.

In Fig. 6(a), the p-class Hello1 declares four units: a, b, c, and d. The first two are singleton units, whereas the last two are
parallel ones. The parallel keyword announces a parallel unit. Hello1 has a parallel class method, named sayHello, without a
default implementation. Therefore, it is implemented by each unit. There is also an example of parallel unit method, named
sayBye, declared by unit d. The code of sayBye makes reference to a communicator object received as a special argument
using the brackets notation, named my_comm. In the code of sayHello, the declaration of the communicator argument is
implicit. In such case, it may be referenced using the keywork comm. Implicit declarations of communicator objects is a kind
of syntactic sugar, since most of parallel methods will use a single communicator object. In a call to a parallel method, the
communicator object may also be passed implicitly if there is only one communicator object, implicitly defined, in the scope.
Section 3.3 will provide more details about the semantics and use of communicators.

The p-class Hello2, in Fig. 6(b), illustrates attributes and methods declared in class and unit scopes. For instance, a copy
of the class attribute i exists in each unit a, b, and c. They are independent variables, and can be accessed and updated
locally, by class and unit methods. Notice that a double precision float-point unit attribute n1 is declared in each unit
scope. n2 is another unit attribute, but accessible only in the scope of unit b. The parallel class method sayHello now has
a default implementation, defined outside the class as recommended by C++ programming conventions (C++ syntax also
allows definitions inside the class). The default implementation of sayHello is overridden by specialized implementations
in units b and c, also defined outside the class declaration. Indeed, only the unit a will execute the default implementation
of sayHello. Finally, the method getMy_i is a singleton unit method in the scope of c. Thus, it has access to the class attribute
i and to the unit attribute n1.

3.2.1. Inheritance

Inheritance between p-classes in PObC++ is similar to inheritance between usual C++ classes. The unique peculiarity is
the requirement of unit preservation, which states that the units of a subclass are all those inherited from the superclass.
This is illustrated in Fig. 7.

Adding or removing units of a superclass may violate the type substitution principle of type systems that support
subtyping, which state that an object of a class may be used in any context where an object of one of its superclasses is
required. For instance, let A be a p-class with n distinct units and let A’ be another p-class inherited from A by introducing an
additional unit, distinct from the other ones. Thus, A’ has n + 1 distinct units. Now suppose that a p-class B, having n distinct
units, declares a class attribute v of type A. In execution, a p-object of B instantiates a p-object of A for the attribute v, by
calling the constructor of each unit of A in each one of the n units of B. Now, suppose that one decides to replace the p-object
of A by a p-object of A’ for the variable v. According to the type substitution principle, this would be a safe operation, since A’
is a subtype of A, a consequence of inheritance. But, this is not possible in the described scenario, since the p-object of A’ has
n + 1 units, one more unit than the old p-object of A. Therefore, it is not possible to determine a distinct processing node
inside the p-object of B to place the additional unit.

3.2.2. Scalable p-objects and parallel units

Scalability is a crucial property to be achieved in the design of efficient parallel programs, with concerns from algorithm
design to implementation and tuning for a given parallel computer [33]. The syntax of a parallel programming language
supports scalable parallel programs if it makes it possible to write parallel programs that can execute in an arbitrary
number of processing nodes without recompilation. In most parallel programming platforms, a scalable parallel program
is composed of groups of processes that run the same program. Ranks are used to index processes, making it possible to
distinguish between processes in the group. This is the MPMD style supported by MPI libraries (Section 2.1). The number of
processes may be defined just before execution. This is the reason why parallel programming artifacts must provide means
for the specification of an arbitrary number of processes.

As exemplified before, units may be declared as parallel units using the parallel modifier to make possible scalable
p-objects in PObC++ possible. During execution of a parallel unit method, the identification of a single unit and the number

76 E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

of units actually instantiated for the parallel unit, as well as information about the topological organization of such units,
may be fetched by invoking the methods of one or more communicators that may be provided by the caller, as illustrated in
the example introduced in the next section. This is also valid for parallel class methods.

3.2.3. Asimple example of parallel class

In Fig. 8(a), the p-class MatrixMultiplier declares a unit named manager and a parallel unit named cell, aimed at
implementing the well-known systolic matrix multiplication algorithm [34]. In the following discussion, we will refer to
these units as the manager and the cells, respectively.

Through an invocation to the distribute parallel class method, the manager distributes the elements of the two input
square nxn matrices, named a and b, among a team of nxn cells. For that, all the units engaged in the parallel invocation
of distribute, i.e. the manager and the cells, perform invocations to the collective communication operation scatter of the
communicator (comm). After this operation, each cell has corresponding elements at position (i, j) of a and b in variables a
and b.

The execution of the matrix multiplication systolic algorithm is performed by an invocation to the compute parallel unit
method of the cells. It is worth noticing that the communicator expected in an invocation to the compute parallel method
is cartesian, since it is typed by CartesianCommunicator, ensuring that the cell unit instances are organized according to a
square mesh topology, as required by the systolic algorithm to work correctly. In compute, the cells first of all exchange their
elements to realignment of data, using isend and recv point-to-point communication operations of comm. After that, the
cells engage in a loop of n iterations, where, at each iteration, each cell accumulates the product of a and b in the variable
¢, sends the current values of a and b to its east and south neighbor and receives new values of a and b from the west and
north neighbors, respectively. At the end of the operation, each cell at position (i, j) has traversed all the elements of the i-th
row of matrix a and j-th column of the matrix b, accumulating the sum of the corresponding values in c. Thus, ¢ contains
the resulting element of matrix c.

Finally, the collect parallel class method is invoked for accumulating the values of the c variables in cells into the manager,
through the gather communication operation of comm.

We will return to this example in further sections, for illustrating other PObC++ constructions.

3.3. Communication and synchronization

In OOPP, the orthogonalization between concerns, encapsulated in p-objects, and processes, results in a clean separation
between two types of messages:

e inter-object communication: messages exchanged between parallel objects, implementing the orchestration among the
set of application concerns, concretely carried out by p-objects, in order to implement the overall application concern. In
general, such messages are carried out by means of method invocations, defining a client-server relationship between
p-objects;

e intra-object communication: messages exchanged among the units of p-objects, usually by means of message-passing,
defining peer-to-peer relationships among units of a p-object. Such messages define the interactions among application
processes, required by most of parallel algorithms.

In the usual parallel approaches of OOP languages, there is no clear distinction between these kinds of messages. As a
consequence, one of the following approaches is adopted:

e parallel synchronization and communication are implemented by means of method invocations between objects, which
is inappropriate for parallel programming, since method invocations lead to client-server relationships between pairs
of processes, or pairs of subsets of processes, whereas most of the parallel algorithms assume peer-to-peer relationships
among them; or

e low-level message passing between objects, defining a communication backdoor for clandestine interaction between
objects, resulting in low modularity and high coupling among the objects that implement a parallel concern.

The well-known M x N coupling problem [35] leads to convincing arguments about the inappropriateness of the first
approach. Let M and N be two sets of processes residing in disjoint sets of processing nodes, probably with different
cardinalities, that want to communicate some data structure whose distribution differ in the two sets of processes. If
each process is implemented as an object, following the usual “BY PROCESSES” perspective of Fig. 3, the logic of the
communication interaction needed to exchange data between the objects of each set tends to be scattered across all the
objects, with some objects making the role of the client side and others playing the role of the server side. Moreover, many
methods may be necessary to control the data transfers back and forth between the two sides of the M x N coupling of
processes. Using OOPP, such coupling could be simply implemented by a single p-object with M + N units that encapsulate
all the coupling logic using peer-to-peer message-passing communication operations.

With respect to the second approach, objects tend to lose their functional independence. Therefore, they cannot
be analyzed in isolation, breaking important modularity principles behind object-orientation that were introduced in
Section 2.2.

Fig. 8. Matrix multiplier example.

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90 77
class MatrixMultiplier void MatrixMultiplier::manager:: distribute ()
public: void distribute(); ([Communicator comm]
intx collect(); int fool_a, fool_b;
unit manager { comm. scatter (a—1,&fool_a ,rankof(manager));
. g. comm. scatter (b—1,&fool_b ,rankof(manager));
private: }
int xa, xb, xc, n;
public: . . AT .
void set_ab(int n_, int xa_, int xb_) ntx MMrlX%;}]}[:}?&ﬁéa’t'oTig;g;]r“CO”eCt()
{n=n_;a=a_; b=>b_} (
} comm. gather(—1, ¢, rankof(manager));
parallel unit cell { , return ¢ + 1;
private: int a, b, ¢ = 0;
int i, j, n; . . T s .
void calculate_ranks_neighbors void Matrlx%sg;ﬁdﬁ;‘t;ecgﬁﬁ?lSt“bum()
(CartesianCommunicator, {
i:llt* "il:li*l;t*' Intx, comm. scatter(&a, rankof(manager));
public: parallel intx compute(); } comm. scatter(&b, rankof(manager));
}
} intx MatrixMultiplier:: cell:: collect()
. [Communicator comm]
class Main (
{
. comm. gather(&c, 1, rankof(manager));
p“.bhc' . return &c;
int main();)
pré‘(;rant;;nicator comm._data-: void MatrixMultiplier:: cell ::compute()
X Lo ' . [CartesianCommunicator comm]
CartesianCommunicator create_comm_compute(); {
unit root int west_1_rank, east_1_rank,
north_1_rank, south_1_rank;
. . . int west_n_rank, east_n_rank,
int main()[Communicator world_comm] north n rank . south n rank:
(_n_) _n_ ;
MatrixMultiplier :: manager smm int i = comm. coordinates[0]:
= new MatrixMultiplier:: manager(); int j = comm: coordinates[l]:
E?én;:;‘(izﬁl; Z\(/)cr)rrlldaice)r(n)rr.l.clone(); calculate_ranks_neighbors(comm, i, j,
- - p ’ &west_n_rank, &east_n_rank,
>distribute ()[comm_data]; &north_n_rank, &south_n_rank);
¢ = mm—>collect()[comm_data]; // initial alignment
) } comm. isend<int >(west_n_rank,0,&a,1);
comm. isend<int >(north_n_rank,0,&b,1);
arallel unit peer comm. recv<int>(east_n_rank,0,&a,1);
? p comm. recv<int >(south_n_rank,0,&b,1);
private: . . . calculate_ranks_neighbors(comm, 1, 1,
CartesianCommunicator comm_compute; &west 1. rank . &east 1 rank
int main()[Communicator world_comm] &north_1_rank, &south_1_rank);
{ . .
MatrixMultiplier:: cell xmm £/+itzri g%’smllc calculation
= new MatrixMultiplier:: cell(); for (k=0 k < n—1; k++)
- . {
comm_data = world_comm. clone (); comm. isend <int >(east_1_rank,0,&a,1);
comm_compute = create_comm_compute (); comm. isend <int >(south_1_rank,0,&b,1);
P . comm. recv<int>(west_1_rank,0,&a,1);
mm->distribute ()[comm_data]; comm. recv<int>(north_1_rank,0,&b,1);
mm—>compute () [comm_compute] ; C4=a%b:
mm—>collect ()[comm_data]; } !
J)
}
}
(a) (b)

3.3.1. Intra-object communication: message-passing among units

Intra-object communication between units of a p-object is implemented by means of message-passing through
communicators, as in MPI. In PObC++, a communicator is a primitive p-object, whose methods enable communication among
the units of a p-object in the execution of parallel methods. The idea of treating communicators as objects comes from state-

78 E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

CartesianCommunicator
Main: peer : : create_comm_compute ()
CartesianCommunicator {
Main:root::create_comm_compute () Group group_all = comm.group();
[Communicator my_comm] Group group_peers
{ = group_all.exclude(ranksof(root));
Group group_all = my comm. group(); Communicator comm_peers
Group group_peers = comm. create (group_peers);
= group_all.exclude(ranksof(root));
my_comm. create (group_peers); int size = comm_peers.size();
int dim_size = sqrt(size);
/* the returned communicator is a int[2] dims = {dim_size,dim_size};
null communicator, since root bool[2] periods = {true,true};
is not in group_peers %/
return
return null; new CartesianCommunicator
} (comm_peers, 2, dims,
periods, false);
}
(a) (b)

Fig. 9. create_comm_compute.

of-the-art object-oriented versions of the MPI interface, such as MPLNET [21] and Boost.MPI [20], proposed by the same
research group at Indiana University.

Let A be a p-object. Let B be a p-object that has a reference to A. A has been instantiated by B or a reference to A has been
passed in a call to some parallel method of B. Thus, B may perform invocations to parallel methods of A. On each parallel
invocation, B must provide a communicator, which may be either instantiated by B using the PObC++ API or received from
another p-object. Communicators can be reused in distinct parallel invocations, possibly applied to distinct parallel methods
of distinct p-objects.

The creation of communicators is illustrated in Fig. 8, where two communicators are created: comm_data, for invocations
of parallel class methods distribute and collect; and comm_compute, for invocations of the parallel unit method compute.
The communicator comm_data groups all the processes (units of the Main class). For this reason, it is created by
cloning the global communicator (world_comm), which is automatically passed to the main function of each process. The
communicator comm_compute is a cartesian communicator, created in an invocation to the private parallel class method
create_comm_compute, whose code is presented in Fig. 9. It involves only the group of cell units. Using the MPI pattern,
a communicator is always created from other communicators in a collective operation involving all the members of the
original communicator. For this reason, create_comm_compute must also be executed by the root unit, returning null since
root is not included in the group of the created communicator.>

Notice that a communicator is not explicitly passed to create_comm_compute. In this case, the communicator of the
enclosing parallel method (world_comm) is implicitly passed to create_comm_compute, but renamed to my_comm in its
scope.

The implicit declaration and passing of communicators are only syntactic sugar for simplifying the use of communicators
in simple parallel programs. They are the reason for the use of brackets for delimiting declaration of communicators. In fact,
there are two situations where it is useful to explicitly declare a communicator identifier:

e The parallel method receives more than one communicator;
e The programmer wants to use a distinct identifier for referencing the communicator, such as in the example of Fig. 8,
where world_comm was used instead of comm.

The rankof and ranksof operators. In Figs. 8 and 9, the operators rankof and ranksof are used to determine the rank of given
units in the communicator of a parallel class method. The rankof operator must be applied to the identifier of a singleton unit
of the p-object, returning an integer that is the rank of the unit in the communicator of the parallel class method, whereas
ranksof must be applied to the identifier of a parallel unit, returning an array of integers. They are useful and allowed only
in the code of parallel class methods of p-objects that have distinct units. In the first call to rankof or ranksof, communication
takes place to determine the ranks of the units of the p-object in the current communicator. For this reason, in the first call toa
parallel class method all the involved units must call rankof/ranksof collectively. In the subsequent call, such synchronization
is not necessary, since the units remember the calculated ranks.

3 Itis important to emphasize that this is a requirement of MPI for making possible to create communicators involving a subgroup of the group of process
of an existing communicator. This requirement must be followed by any parallel programming language or scientific computing library implemented on
top of MPIL.

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90 79

void MatrixMultiplier::peer::calculate_ranks_neighbors
(CartesianCommunicator& comm, int shift_x, int shift_y
intx west_rank, intx east_rank, intx north_rank, intx south_rank)

int dim_size_z
int dim_size_y

= comm. Dimensions[0];
= comm. Dimensions[1];
int i
int j

= comm. coordinates[0];
= comm. coordinates[1];
int[2] west_coords
int[2] east_coords
int[2] north_coords
int[2] south_coords

= {(i—shift_x) % dim_size_x, j};
= {(i+shift_x) % dim_size_x, j};
= {i, (j—shift_y) % dim_size_y};
= {i, (j+shift_y) % dim_size_y};
swest_rank = comm. getCartesianRank(west_coords);
xeast_rank = comm. getCartesianRank(east_coords);
«north_rank = comm. getCartesianRank(north_coords);
«south_rank = comm. getCartesianRank(south_coords);

Fig. 10. calculate_ranks_neighbors.

As in MPI, communicators carry topological information about the units. In the default case, units are organized linearly,
with ranks defined by consecutive integers from 0 to size — 1, where size is the number of processes. Alternatively, units
may be organized according to a cartesian topology in N dimensions, having P; units in each dimension, fori from0to N — 1.
The most general topology is the graph topology, where each unit is associated to a set of adjacent units. In general, the unit
topologies of p-objects follow the communication structure of the underlying algorithm their parallel methods implement.
Such information can be useful by the runtime system to make a best mapping of units onto the processing nodes of the
parallel computing platform, trying to load balance computations and minimizing communication overheads. In the example
of Fig. 8, the communicator comm_compute has a cartesian topology with two dimensions and wraparound links, whereas
comm_data has the default linear topology.

The communication operations supported by a communicator are those ones supported by communicator objects in
Boost.MPI and MPILNET, both point-to-point and collective subsets. Communicators also support operations to identify
units and their relative location in the underlying communicator topology. These operations are dependent on the topology
described by the communicator:

o Linear topology: The operation size returns the number of processes in the communicator group; the operation rank
returns the process identification, which is an integer ranging from 0 to size — 1;

o Graph topology: The operations rank and size have the same meaning as for linear topologies. In addition, the operation
neighbors returns an array of integers containing the ranks of the adjacent units of the current unit. Similarly, if the
current unit wants to know the ranks of the adjacent units of another unit, using its rank, then it may use operation
neighborsOf. The operation num_egdes returns the number of edges of the graph of units. Finally, the operation edges
returns an adjacent matrix representing the graph.

e Cartesian topology: The operations rank, size, neighbors and num_edges are all supported by these kinds of
communicators, since a cartesian topology is a special case of graph topology. In addition, the operation dimensions
returns an array of integers containing the length of each dimension, whereas the operation coordinates returns
the coordinate of the unit in each dimension. The number of dimensions is the length of these arrays. The periodic
operation returns an array of boolean values that says if a dimension is periodic or not. Finally, there are the operations
getCartesianRank, which returns the rank of a unit in a given set of coordinates, and getCartesianCoordinates, which
returns the coordinates of a unit with a given rank. In the example of Fig. 8, the parallel method compute calls the
unit method calculate_ranks_neighbors twice to calculate the ranks of the four neighbors of the current cell in the two-
dimensional mesh at distance shift_x in the x direction (west-east) and shift_y in the y direction (north-south). The code
of calculate_ranks_neighbors is shown in Fig. 10. The i and j coordinates of the current cell are determined by calling
coordinates. After calculating the coordinates of the neighbor cells, their ranks are obtained by calling getCartesianRank;

In OOPP, objects cannot be transmitted through communicators, but only values of non-object data types, primitive and
structured ones. This is not intended to simplify the implementation effort, since Boost.MPI already gives support for object
transmission. In fact, we consider communication of objects a source of performance overheads which are difficult to predict,
due to marshaling/unmarshaling (serialization) requirements. Performance prediction is an important requirement of HPC
applications. Indeed, this restriction makes it possible for the optimization of communication primitives.

The above restriction is not too restrictive for programming, since object transmission may be easily implemented by
packing the state of the object in a buffer, sending it through a message to the destination, and loading the packed state
into the target object. However, we are considering introducing two linguistic abstractions to deal with use cases of object
transmission through message-passing, so called migration and (remote) cloning. Migration is a variant of cloning where the
reference to the object in the original address space is lost after the copying procedure.

80 E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

3.3.2. Inter-object communication: parallel methods
Remember that inter-object messages are implemented as method invocations of two kinds (Section 3.1):

e Unit methods, defined in unit scope, with no access to the p-object communicator.
e Parallel methods, declared either in the class scope (parallel class method) or in the unit scope (parallel unit method).

As depicted in Fig. 4, a parallel method invocation is composed of a set of local method invocations between pairs of units of
the caller and the callee p-objects that are located in the same processing nodes. Thus, there is no remote method invocation.
In most of the parallel programs, since parallel methods are the only synchronization and communication points of the
parallel program among units that reside in distinct processing nodes, it is expected that the calls to a parallel method
performed by units of a p-object must complete together, avoiding excessive synchronization overheads and deadlocks
caused by the execution of synchronous point-to-point operations and barrier synchronizations between units involved in a
parallel method invocation. In such cases, the numbers of calls to the same parallel method by each unit would be the same.*
However, such a restriction cannot be enforced statically, giving to the programmers the responsibility of the coherent use
of parallel methods, such as in MPI programming. Fortunately, we view the flexibility of letting synchronization between
parallel methods being explicitly controlled by the programmer as an interesting opportunity to investigate non-trivial
parallel synchronization techniques.

Inter-object communication by method invocations makes it unnecessary to introduce the concept of inter-
communicators, supported by MPI, in PObC++. According to the MPI standard, inter-communicators make possible message
exchanging between groups of processes in disjoint communicators (intra-communicators) possible.

3.3.3. Communication and synchronization in the example

In the example of Fig. 8, parallel methods distribute, collect, and compute perform communication operations. They
exemplify both collective and point-to-point communication operations through communicators. The first two operations
perform collective patterns of communication (scatter and gather) between the manager and the set of worker cells
for distributing the input among the cells and for collecting the results they calculate. In compute, point-to-point
communication operations (isend and recv) are performed to implement the systolic computation. Before the main loop,
the required realignment of elements of matrices a and b is performed. Each cell communicates with its adjacent cells in the
square mesh, at the left, right, up, and down directions.

3.4. Instantiation

Ap-object is instantiated by another p-object by the collective instantiation of each one of their units in distinct processing
nodes, using the usual C++ new operator applied to the unit identification, which has the form (class_name)::(unit_name).
This is illustrated in the code of the p-class Main of Fig. 8, where the units MatrixMultiplier::manager and MatrixMultiplier::cell
are instantiated.

No communication occurs between the units during instantiation. As described before, communication only occurs in
parallel method invocations and the caller is responsible for creating an appropriate communicator and passing it to the
parallel method it wants to invoke.

The instantiation of a p-object is an indivisible operation. However, since there is no communication or synchronization
in the instantiation procedure, units may be instantiated at different points of execution. The programmer is responsible to
ensure that all units of a p-object are properly instantiated before invoking any of their parallel methods. It is a programming
error to forget instantiation of one or more units. Notice that there is no restriction to the number of units of a parallel unit
to be instantiated in distinct processing nodes. The identification of each unit is defined by the communicator passed to each
parallel method invocation and may change across distinct invocations.

3.5. Implementation

PObC++ is an open source project hosted at http://pobcpp.googlecode.com, released under the BSD license. It is composed
of a compiler and a standard library.

3.5.1. Compiler

In order to rapidly produce a fast and reliable compiler prototype, a source-to-source compiler written in C++ was
designed by modifying Elsa, an Elkhound-based C/C++ parser. Elkhound [36] is a parser generator that uses the GLR parsing
algorithm, an extension of the well-known LR algorithm that handles nondeterministic and ambiguous grammars. In

4 It is not correct to say that the violation to this programming recommendation always lead to programming errors. In certain situations, a unit of a
p-object may have no work to perform in a call to a parallel method. In such case, if the parallel method is not invoked for this unit, no error occurs. However,
this is a exceptional situation, probably due to a bad parallel algorithm design, which may lead to programming errors since the programmer must infer
statically which calls to the parallel method do not have participation of a given unit.

http://pobcpp.googlecode.com
http://pobcpp.googlecode.com
http://pobcpp.googlecode.com
http://pobcpp.googlecode.com

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90 81

input ; PObC++ Compiler '
PObC++ : Scanning and parsing 3 Type checking N Transforming PObC++ AST : C++
source code H using Elsa and disambiguation in order to build a valid C++ AST | ! source code
E 1th phase 2nd phase 3rd phase : output

Fig. 11. PObC++ compiler phases.

particular, the Elkhound’s algorithm performs disambiguation during the type checking process in order to generate a valid
AST (Abstract Syntax Tree). The phases of the PObC++ compiler are depicted in Fig. 11.

The modifications performed during the third phase transform each unit of a p-class into a valid C++ class, augmented
with meta-information about the units defined within the p-class. These adjustments generate only C++ valid code and do
not interfere with the rest of the program. In fact, only the code containing p-class declarations needs to be compiled by the
PObC++ compiler.

C++ code can be used without modification in PObC++ programs. Thus, virtually any C/C++ library can be integrated with
PObC++ programs. Since the programmer uses the PObC++ compiler to generate C++, any C++ compiler may be used to
generate the native code. Such features are essential to promote the straightforward integration of PObC++ programs with
scientific libraries and legacy code written in C and C++. This is the motivation for the case study that will be presented in
Section 4.2.

3.5.2. Standard library
The standard PObC++ library is composed of implementations of:

e support for communicators, particularly the comm communicator;
e helper functions to initialize and finalize the environment.

All functions are defined in the scope of the namespace pobcpp.

4. Case studies

The case studies presented in this section intend to give an overview of programming techniques, expressiveness, and
the potential performance of programs written in the OOPP style.

The first case study presents a parallel numerical integrator that demonstrates skeletal-based parallel programming in
PObC++. Also, it presents a performance evaluation where a PObC++ program is compared to its version written purely
in C++/Boost.MPI, aiming at providing evidence that the OOPP abstractions supported by PObC++, which makes the use
of high-level programming techniques such as skeletons possible, do not add significant overhead to the performance of
parallel programs, using C++/MPI programming as a baseline.

The second case study illustrates the integration of PObC++ with existing scientific computing libraries, an important
requisite for the acceptance of this language among programmers in scientific and engineering domains. For this, we have
created an OOPP interface for a subset of PETSc, a widely used library of subroutines for a solution of sparse algebraic systems
for Fortran, C,and C++. According to its developers, PETSc follows an object-based design, despite using a procedural interface
since it must be supported by Fortran and C. For this, it supports matrices, vectors and solvers as objects, providing an
interface for their instantiation and handling. Therefore, OOPP provides a complete object-oriented alternative for PETSc
interface and implementation, providing all the benefits of OOP to PETSc programmers.

The third case study illustrates abstraction and encapsulation of parallelism interaction in p-objects. An abstract p-class
named Sorter has two subclasses named BucketSort and OddEvenSort. They implement distinct parallel algorithms for
sorting an array of integers, which uses different patterns of process interactions. The user of a Sorter p-object does not need
to know how interaction between sorting units takes place. Using the IS kernel of NAS Parallel Benchmarks (NPB) [40] for
implementing the bucketsort algorithm, a performance evaluation compares the performance of a PObC++ program with its
version written in C/MPI, ignoring not only the overheads of OOPP abstractions, but also the overheads of object-orientation
and Boost.MPI indirections.

4.1. 1st case study: farm-based parallel numerical integration

We have implemented a parallel numerical integrator using two p-classes: Farm and Integrator. The former one is an
abstract class, implementing the skeleton farm, which implements an abstraction for a well-known parallelism strategy,
including its pattern of inter-process communication. The class Integrator extends Farm aiming to implement a parallel
numerical integration using farm-based parallelism. We have reused the numerical integration algorithm implemented
by the NINTLIB library, based on the Romberg’s Method [37]. NINTLIB is not parallel. Therefore, it has been necessary to
parallelize it.

82 E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

Skeletal programming. The term algorithmic skeleton was first coined by Murray Cole two decades ago to describe reusable
patterns of parallel computations whose implementation may be tuned to specific parallel execution platforms [38].
Skeletons have been widely investigated by the academic community, being considered a promising approach for high-
level parallel programming [6]. Skeletal programming is an important parallel programming technique of OOPP.

4.1.1. The Farm class (skeleton)

The Farm class is presented in Fig. 12(a). It declares two parallel methods, synchronize_jobs and synchronize_results,
which are invoked by the units of a farm object to transmit the jobs, from the manager to the workers, and the results of the
jobs, calculated by the method work, from the workers to the manager. Despite work being implemented by each worker,
it is still a unit method, and not a parallel method. In fact, the work of a worker is a local procedure in its nature. For this
reason, no communication is needed among the workers of the farm when they are working.

The methods synchronize_jobs, synchronize_results, and perform_jobs have default implementations in the Farm, which
are not presented in Fig. 12(a). The implementation is supposed to be the best possible for the target execution platform,
freeing programmers from the burden of knowledge about details of the target parallel architecture in order to choose the
best collective communication algorithm for distributing jobs and collecting results. Indeed, the programmers may link their
farm-based parallel programs to any Farm class implementation that is specialized for some architecture.

The methods add_jobs, get_next_result and get_all_results also have default implementations. The last two blocks until an
unread result have arrived at the manager from the workers and until all results from the workers are available, respectively.
get_next_result returns null if all results have arrived. These methods are prepared for the concurrency among the methods
synchronize_jobs, synchronize_results, and perform_jobs, which have been developed with thread safety in mind. So, the
user may call these methods on distinct threads to overlap computation and communication. However, according to the
characteristics of the target parallel computing platform, the implementation will decide how many jobs must be received
by add_jobs before beginning to send jobs to the workers, as well as deciding how many results must be calculated by a
worker before sending a result, or a set of results, to the manager.

In order to use a farm, the programmer must extend the Farm class, by inheritance. Then, it must implement the
virtual unit methods pack_job, unpack_result, pack_result, unpack_job, and work. The first four methods are necessary to
pack/unpack job and result objects to/from arrays of bytes, in order to be transmitted through the communicator. The actual
Result and Job types must be defined. Remember that objects cannot be transmitted through communicators, but only data
values. Packing and unpacking procedures are necessary to keep the generality of the Farm. The method work defines the
computation performed by each work, which essentially defines the problem under solution.

4.1.2. The Integrator class

The Integrator class, as declared in the header file integrator.h, is presented in Fig. 12(b). Besides the virtual methods inher-
ited from the Farm class, it will implement the manager methods generate_subproblems, which will partition the integration
interval, build the job objects, and call add_jobs in order to feed the farm’s job list, and combine_subproblems_results, which
will call get_next_result or get_all_results to retrieve the numerical results calculated by the workers, which will be added.

4.1.3. The main program

The main class of the integrator program is outlined in Fig. 13. The implementation tries to exploit all the concurrency
available in the farm, by forking threads using OpenMP [39], a library of subroutines and preprocessor directives for shared-
memory parallel programming. This is an example of how multi-threading parallelism can be exploited inside units of
p-objects.

The reader may notice that a communicator is implicitly passed to the parallel method invocations in the code of main.
As pointed out in Section 3.3.1, if a communicator is not explicitly provided, the communicator of the enclosing parallel
invocation is implicitly passed. In the example, such communicator is the global communicator, which is received by the
main method. This is only possible if the enclosing parallel method has only one communicator. Also, notice that the
communicator identifier of main is not explicitly informed. In such cases, the communicator has the default identifier comm.

4.1.4. Performance evaluation: the weight of OOPP abstractions

Tables 1 and 2 summarize the performance results obtained by executing the PObC++ numerical integrator and its
C++/MPI version on the CENAPAD-UFC cluster,’ installed at the National Center for High Performance Computing (CENAPAD)
at Universidade Federal do Ceara (UFC), by varying the number of processors (P) and dimensions (n).

This experiment aims at providing evidences that the weight of new OOPP languages abstraction added to C++ by PObC++
is insignificant compared to the gains in modularity and abstraction they give support.

5 CENAPAD-UEC is composed by 48 Bull 500 blades, each one with two Intel Xeon X5650 processors and 24 GB of DDR3 1333 MHz RAM memory. Each
processor has 6 Westmere EP cores. The processors communicate through a Infiniband QDR (36 ports) interconnection. More information about CENAPAD
at http://www.cenapad.ufc.br and https://www.Incc.br/sinapad|/.

http://www.cenapad.ufc.br
http://www.cenapad.ufc.br
http://www.cenapad.ufc.br
http://www.cenapad.ufc.br
http://www.cenapad.ufc.br
https://www.lncc.br/sinapad/
https://www.lncc.br/sinapad/
https://www.lncc.br/sinapad/
https://www.lncc.br/sinapad/
https://www.lncc.br/sinapad/

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

template<typename Job, typemame Result>
class Farm
{
public:
void synchronize_jobs();
void synchronize_results();

unit manager
{
private:
Jobx all_jobs;
Resultx all_results;

public:
void add_jobs(Jobx job);
Result get_next_result();
Resultx get_all_results();
virtual voidx pack_jobs(Jobx jobs);

virtual Result unpack_result(voidx result);

N

parallel unit worker
{
private:
Jobx local_jobs;
Resultx local_results;

public:
parallel void perform_jobs();
virtual Result work(Job job);
virtual Job unpack_jobs(veidx jobs);

virtual voidx pack_result(Resultx result);

(a)

class Integrator:
public Farm<Integratorjob, double>
{
unit manager
{
private:
int inf, sup;
int dim_num, partition_size;

public:
Manager(int inf, int sup,

inf(inf), sup(sup),
dim_num(dim_num),
partition_size(psize) { }

public:
void generate_subproblems();
double combine_results();

N

parallel unit worker
{ .
private:
int number_of_partitions;
int next_unsolved_subproblem;
double (xfunction)(doublex);

public:
Worker(double (xf)(doublex),
int tol, int nop)
function(f),
number_of_partitions(nop),
next_unsolved_subproblem(0),
tolerance(tol) { }

(b)

int dim_num, int psize) :

Fig. 12. The Farm class (a) and (b). The Integrator class (b).

class IntegratorMain

{

public: int main();

unit root
{
int main()
{
#pragma omp parallel
{

Integrator ::manager xm

= new Integrator ::manager
(0.0, 1.0, 5, 2);

double result;

#pragma omp sections

{
#pragma omp section
m —> generate_subproblems();
#pragma omp section
m —> synchronize_jobs();
#pragma omp section
m —> synchronize_results();
#pragma omp section
result = m—>combine_results();

} "

cout >> "Result is ", result;

(...

)

parallel unit peer

{

int main()
{
#pragma omp parallel
{
Integrator ::worker sw
= new Integrator ::worker
(function, 1D-5, 16);
#pragma omp sections
{
#pragma omp section
w —> synchronize_jobs();
#pragma omp section
w —> perform_jobs();
#pragma omp section
w —> synchronize_results();

Fig. 13. Main classes (farm-based numerical integrator).

83

84 E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

Table 1
Average execution times (in seconds) and confidence interval (¢« = 5%) for comparing PObC++ to C++ for different workloads and number of

processing nodes in parallel multidimensional integration.
n==6 n=7 n=38
P | PObCH | CH+MPI | Omn | Diff | PObCs++ | Ce+MPI | Omn | Diff | PObC++ | ce+Mpl | Omin | pifr
5”“1)((Smax (Smax
+1.5% +1.0% +1.4%
1 5931001 | 5.83+007 +1.8% y 109.11 018 | 107.8+089 +1.2% y 19714354 | 19424509 +1.7% y
+1.3% +1.0% +1.4%
2 3.00£002 | 2.95+003 +1.6% y 55.0+010 54.54 031 +1.1% y 9974 311 9834 848 +1.6% y
1% F0.9% 1%
4 1.50+ 001 1.494 001 +1.4% y 27.7+ 013 27341019 +1.1% y 500+ 144 4934 641 41.4% y
+0.6% —1.2% +1.2%
8 0.761001 | 0.75+001 +1.1% y 13.8+ 040 13.91113 +1.1% n 2524 8 247+ 337 +1.6% y
—5.1% —1.9% —0.5%
16 | 0384001 | 039005 | _5 5 y 6.91 011 7.04 033 —0.7% y 1254 058 1244 156 _0.1% y
—2.9% —3.2% —0.3%
32 | 0.20+003 | 0.20+003 12.6% n 3.6+.046 3.5+ 054 12.4% n 64.91 911 63.441 764 1+4.9% n
Seq 5.43 104.1 1921
Table 2
Speedup of parallel multidimensional integration with PObC++ and C++.
n==6 n=7 n=3_8
P PObC++ | C++/MPI | PObC++ | C++/MPI | PObC++ | C++/MPI
1 0.9 0.9 0.9 0.9 0.9 0.9
2 1.8 1.8 1.8 1.9 1.9 1.9
4 3.6 3.6 3.7 3.8 3.9 3.8
8 7.1 7.1 7.5 7.4 7.8 7.7
16 14.2 139 15.0 14.8 15.7 154
32 27.1 27.1 28.9 29.7 30.3 30.2
N = number of dimensions

The average execution times and confidence intervals presented in Table 1 have been calculated from a sample of 40
executions. For the purposes of the analysis, it is supposed that the distribution of the observed execution times is normal.
For improving reliability, outliers have been discarded using the Box Plot method for k = 4.0 (length of the upper and lower
fences). Without the outliers, each sample has more than 30 observations, which is recommended for ensuring statistical
confidence according to the literature [41]. The clusters have been dedicated to the experiment, resulting in relatively low
standard deviations and, as a consequence, tight confidence intervals, contributing to the reliability of the analysis. All the
measures and relevant statistical summaries for this experiment can be obtained at http://pobcpp.googlecode.com.

In the experiment, the function

2 2 2 2
FXa, %0, X3, .., %) =X17 + X" + X374+ -+ Xy

is integrated in the interval [0, 1] in parallel. For that, the parameter dim_partition_size defines the number of partitions of
the interval in each dimension, of the same size, yielding num_jobs = dim_partition_size" subproblems of integration. It is
also necessary to define the parameter number_of _partitions required by the procedure NINTLIB.romberg_nd, as a multiple
of num_jobs, in order to preserve the amount of computation performed by the sequential version. Empirically, we set
dim_partition_size = 2 and number_of_partitions = 8, by varying n between 6 and 8.

In Table 1, the lower (6,i,) and upper (8mqx) €stimations of the overhead of PObC++ in relation to C++/MP], for each pair
(P, n), is presented. They are calculated as following: Let [xo, X1] [0, ¥1] be the confidence interval for the observations of a
pair (P, n) for PObC++ and C++/MP], respectively. Then, &;,in = (y1 — Xo)/X and 8y = (Vo — X1)/X, where X stands for the
average execution time of C++/MPI, since overhead is a relative measure of the additional execution time when PObC++ is
used in alternative to C++/MPI. Thus, a negative value for an overhead estimation means that PObC++ outperformed C++/MPI
for the given workload (n) and number of processing nodes (P). If the lower and upper overhead estimations have different
signals, it means that it is not possible to state, for statistical confidence at 5%, that either PObC++ or C++/MPI outperformed
the other. On the other hand, if both estimations have the same signal, either PObC++ (negative) or C++/MPI (positive) is
considered better.

The overhead estimations in Table 1 show that C++/MPI always outperforms PObC++ for 8 or less processing nodes. For
16 and 32 nodes, either PObC++ outperforms C++/MPI or neither one is better than the other. Also, it is important to note
that only 2 out of the 18 positive overhead estimations are greater than 2.0% (+2.4% and 4.9%). These is strong evidence
that PObC++ is a good alternative in relation to C++/MP], since the performance degradations are insignificant compared
to the gains in modularity and abstraction offered by object-orientation for the programming practice. The performance
equivalence of PObC++ and C+/MPI is not a surprise, since the PObC++ version is translated to a C++/MPI program that is
almost equivalent to a C++/MPI version built from scratch, except for call indirections from the communicator interface to
the MPI subroutines. The essential difference is the better object-oriented properties achieved by PObC++, with potential

http://pobcpp.googlecode.com
http://pobcpp.googlecode.com
http://pobcpp.googlecode.com
http://pobcpp.googlecode.com

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90 85

class ParallelKSP
class ParallelVec { ..
{ public:
. PetscErrorCode
public: Create();
rli"f;izl?rrorCode Create(); PetscErrorCode
p Vec VéC' SetOperators(ParallelMat ::pmat& Amat,
’ ParallelMat :: pmat& Pmat,
. . MatStructure flag);
}.parallel unit pvec {}; PetscErrorCode
’ Solve(ParallelVec::pvec& b,
PetscErrorCode ParallelVec::pvec& x);
(ParallelVec::pvec:: Create() /* Other methods: tolerance control,
return preconditioning, etc */
VecCreate (comm—>get_mpi_comm(),
} &vec); private: KSP ksp;
parallel unit ksp {};
}s

Fig. 14. Case study ParallelVec (a) and PKSP (b).

gains in modularity, abstraction, and usability. The same techniques used by an MPI programmer may be almost directly
applied using PObC++.

Table 2 is a measure of the scalability of the implementation of the parallel multidimensional integration used in the
experiments. Notice that the speedup is almost linear and increases as the workload (n) increases.

4.2. 2nd case study: an OOPP interface for PETSc

PETSc is a library for scientific computing designed as a set of data structures and subroutines to solve linear and non-
linear algebraic systems in parallel, using MPL. It is widely used by engineering and scientific programmers in the numerical
solution of partial differential equations (PDE), which describe phenomena of their interest. PETSc follows an object-based
design on top of non-OO0P languages, such as Fortran and C. This section shows a real OOPP interface for PETSc, restricted to
three important modules, demonstrating the integration of PObC++ with scientific computing libraries.

4.2.1. ParallelVec and ParalleIMat class

ParallelVec and ParallelMat are p-classes that represent the Vec and Mat data structures of PETSc, respectively. Vec
represents a vector that is distributed across the computing nodes, whereas Mat represents a distributed matrix. In Fig. 14(a),
the code of ParallelVec is presented. The code of ParallelMat is similar. They have parallel units pvec and pmat, respectively.
It is important to note that PETSc requires an MPI communicator for the creation of vectors and matrices. This is often
necessary in parallel scientific libraries on top of MPIL. In PObC++, this is supported by declaring Create as a parallel method.
Then, a primitive communicator can be obtained by calling the method get_mpi_comm of the communicator comm, which
may be passed to VecCreate and MatCreate underlying PETSc subroutines. This is a valid assumption, since PObC++ is
implemented on top of the MPI standard by design. In ParallelVec, the call to VecCreate will assign a Vec data structure to
the private attribute vec, representing the underlying PETSc vector that stores the local partition of the vector that is inside
the address space of the unit.

4.2.2. The ParalleIKSP class

ParallelKSP declares a parallel unit named ksp, representing a parallel solver for linear systems using the Krylov subspace
methods. Fig. 14(b) outlines the essential elements of the interface of a p-object of p-class ParallelKSP. After instantiation
of the solver, by calling the constructor of ParallelKSP, the user must call the Create method to initialize the solver data
structures across computing nodes. Then, it must call SetOperators to provide the operator matrices, Amat and Pmat, which
are reused across many subsequent calls to the method Solve, to which the most specific part of the problem parameters,
vectors b and x, are informed. The ksp attribute is the underlying PETSc solver.

4.3. 3rd case study: parallel sorting

This section presents an abstract p-class called Sorter, which is specialized in two subclasses of p-objects that implement
well-known sorting algorithms, bucketsort and odd-even sort. Such p-classes are called BucketSort and OddEvenSort,

86 E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

class BucketSort : Sorter
class Sorter (
{

public: void virtual sort() = 0; public: void sort();

parallel unit worker parallel unit worker

{ b
public: prlve.ate : . .
void set(intx items, int size); void local_sort(zgz*slitzeerr)lf,
Pl';)rtl::t??eimS. void fill_buckets(intx key_array_1,
int size- ' intx key_array_2,
}: ' int+ bucket_ptr,
) ' intx bucket_size)
' |
)

Fig. 15. Sorter (a) and BucketSort (b).

respectively. They illustrate abstraction and encapsulation in OOPP, in relation to communication and synchronization
among units of a p-object, since the communication sequences among units of the two sorters use distinct parallelism
interaction patterns.

4.3.1. The Sorter class

The source code of the Sorter p-class is presented in Fig. 15(a). It declares a virtual parallel function sort. Also, it comprises
a parallel unit worker that declares an array of integers to be sorted across workers, represented by variables items and size.
Thus, any specialization of Sorter needs to implement the sort method according to its chosen algorithm.

Notice that items and size are declared as unit attributes, instead of class attributes. This is because they represent a local
partition of the array to be sorted, which is initially distributed across the units. At the end of execution, each element in the
array items of unit i is less or equal to any element in the array items of unit j, provided that i < j. In the alternative design,
letting items and size be class attributes, it is implicitly supposed that all items are known by all the units, at the beginning
and at the end of the sorting process, giving to the sort method the responsibility to perform an initial distribution of the
items across the units. For the reasons discussed in Section 3.2, such restrictions must be enforced by the programmer, since
both syntactical ways to declare items and size have the same semantics in PObC++.

4.3.2. The BucketSort class

Bucketsort is an efficient (® (n)) sorting algorithm, provided that the items are uniformly dispersed in the input array.
Let n be the number of items. There is a set {by, ..., by_1} of buckets, where n >> k. The bucketsort algorithm has the
following steps:

1. The items are distributed across the set of buckets, such thatif p € b; A q € bj thenp < qiffi < j;
2. The items inside each bucket are locally sorted using some sorting algorithm.

The p-class BucketSort implements a parallel version of the bucketsort algorithm. For that, it inherits from Sorter, by
implementing the sort method. There are two strategies for implementing BucketSort, based on two ways of parallelizing
the bucketsort algorithm, leading to two alternative implementations of sort:

1. There is a root worker that initially knows all the items, performing the first step of the sequential algorithm. Then,
it distributes the buckets across all workers using the method scatter of comm, itself included. The workers perform
sequential sorting inside the buckets they received. Finally, the workers send the sorted buckets back to the root worker
using the method gather of comm;

2. The items are initially distributed across the workers, such that each worker has local versions of each one of the k
buckets and distributes its local items across their local buckets. After that, the workers distribute the buckets, by
concatenating local versions of the same bucket in a single bucket in the address space of a single worker, using the
method alltoallflattened of comm. Let r and s be the rank of two arbitrary workers and let b; and b; be buckets stored by
r and s, respectively. In the final distribution, r < s iffi < j. Finally, the workers perform sequential sorting inside each
bucket they received. The items are now sorted across the workers.

The latter strategy is more appropriate when there is a fast computation to decide which bucket an item must be assigned
to. Also, the set of items must fit the address space of the root worker. The computation is dominated by the sequential
sorting performed by each worker. However, such strategy breaks the assumption of the Sorter p-class that the items must
be distributed across the workers at the beginning of the sorting process.

The former strategy is better if workers do not have enough address space to store all the items. Thus, the items must
stay distributed across the workers during execution, as required by p-class Sorter. Fig. 16 outlines the implementation of

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90 87

void BucketSort::worker::sort()
{

/* Main data structures x/

intx key_array = items; // array of local keys

intx key_buffer_send; // array of local keys in their buckets

intx bucket_ptr; // bucket pointers in key_buffer_send

intx bucket_size; // bucket sizes

intx key_buffer_recv; // array of global keys in their buckets

/* Initialize data structures x/

/* Copy the elements of key_array to key_buffer_send, partially sorted
according to their buckets. The value bucket_ptr[i] is the start index
of the i—th bucket in key_buffer_send. The value bucket_size[i] is the
number of items in the i—th bucket. %/

fill_buckets(key_array, key_buffer_send, bucket_ptr, bucket_size);

/* Determine the global size of each bucket x/

comm. allreduce (bucket_size, Operation<int>.Add, bucket_size_totals);

/* Determine how many local items will be sent to each process %/

comm. alltoall (send_count, recv_count);

/* Send items to each process */

comm. alltoallflattened (key_buffer_send,send_counts, key_buffer_recv,outValues);

/* Sort the buckets x/

local_sort(key_buffer_recv, size);

}

Fig. 16. BucketSort p-class (sort method).

the sort method of BucketSort using the second strategy. The source code is based on the IS (Integer Sorting) kernel of the
NAS Parallel Benchmarks [40], which implements bucketsort for evaluating the performance of clusters and MPP’s (Massive
Parallel Processors).

There are two important points to note about this case study:

e An object-oriented parallel programmer must take care with implicit assumptions of abstract p-classes concerning
distribution of input and output data structures, when deriving concrete p-classes from them, such as the assumption
of Sorter that requires items to be distributed across the workers;

e The two alternative solutions use collective communication methods of the communicator, but the user of the sorter does
not need to be aware of the communication operations performed by the worker units. This is completely transparent
from the perspective of the user of the sorter. Indeed, it is safe to change the parallelism strategy by choosing a distinct
subclass of the Sorter p-class that implements another parallelization strategy.

4.3.3. The OddEvenSort class

The odd-even sort is a comparison sorting algorithm based on the well-known bubblesort algorithm [42]. Thus, it
has ®(n?) complexity, being essentially distinct from bucketsort. Whereas bubblesort performs a sequence of sequential
traversals of the array of items until they are sorted, by comparing the neighboring elements and exchanging them if they
are in the wrong order, odd-even sort alternates two kinds of traversals. In the odd-even traversals, each odd element is
compared to its next neighbor. In even-odd traversals, each even element is compared to its next neighbor. The compared
elements are still exchanged when they are in the wrong order, such as in bubblesort. Odd-even is an intrinsically shared-
memory parallel algorithm, since odd—even and even-odd traversals may be performed concurrently.

The p-class OddEvenSort implements a distributed variant of odd-even sort. As BucketSort, it is derived by inheritance
from Sorter, implementing the sort method, where comparisons, exchanges and communication/synchronization
operations take place. The sort method of OddEvenSort is outlined in Fig. 17. The items (array items) are distributed among
the workers, such as in the second bucketsort implementation. First of all, the workers sort their local items using some
sorting algorithm (e.g. quicksort). Then, the traversals of odd-even sort are alternated across the workers. In the odd-even
traversals, the workers with an odd rank and their respective next neighbors exchange their items. In the even-odd traversals,
the workers with an even rank and their respective next neighbors exchange their items. The exchange of items between
workers is performed through calls to point-to-point operations on comm, isend and recv. After a traversal, each pair of
workers involved in an exchanging has knowledge about the items of both workers. Let n be the number of items. Then,
the worker with the smaller rank copies the n/2 smaller items in its array items, whereas the other worker copies the n/2
greater ones. The process is repeated until the items are sorted across all workers.

88 E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

void OddEvenSort::worker::sort()

{

/* declaration and initialization of local variables x/

/% Sort the local elements using the built—in quicksort routine x/
std::local_sort(items, nlocal);

/* Determine the rank of neighbors x/

oddrank = rank % 2 == 0 ? rank — 1 : rank + 1;

evenrank = rank % 2 == 0 ? rank + 1 : rank — 1;

/* Get into the main loop of the odd—even sorting algorithm =/
for (j = 0; j < nworkers—1; j++)

{
if (j%2 == 1 & oddrank != —1 && oddrank != nworkers)
{ // Odd—Even traversal
comm. isend (oddrank, 0, items, nlocal);
comm. receive (oddrank, 0, ritems, nlocal);
else if (evenrank != —1 & evenrank != nworkers)
{ // Even—0dd traversal
comm. isend (evenrank, 0, items, nlocal);
comm. receive (evenrank, 0, ritems, nlocal);
}
compareSplit(nlocal, items, ritems, wspace,rank < status.MPI_SOURCE);
}

Fig. 17. OddEvenSort p-class (sort method).

Table 3
Average execution times (in seconds) and confidence interval (¢ = 5%) for comparing PObC++ with C for different workloads and number of processing
nodes using the kernel IS (Integer Sort) of NPB (NAS Parallel Benchmarks).

Class B Class C Class D
p PObC++ C/MPI g:;’; Diff PObC++ C/MPI g:;z Diff PObC++ C/MPI g:;"x Diff
1 | 6.6110004 | 5.9240.025 I};gi v 26.8340012 | 24.2140001 i}?gg v - - - v
2 | 33340002 | 3.04x0010 ig;z v 134940006 | 12.3510.046 igéz v - - - v
4 | 1700004 | 1.5610006 ig:‘% V| 691s000 | 6341000 igfé V| 133050000 | 111720334 ﬂg:g y
8 | 0.8810001 | 0.80+0.003 Ig;z v 3.60-0.000 3.3140010 ig;z f 69.0510016 | 58.90+0.184 I}gzz v
16 | 0.4710001 | 0.4310.001 Igg:ﬁ y 1.90.0.002 1.75+0.006 I;;z y 37.7010008 | 33.2940.108 igzé v
32 | 0.2740001 | 0.2540.001 I;gi v 1.11.£0.000 1.03.10.003 isgz v 232140007 | 14.0540,055 igg:ﬁ v
64 | 0.1940000 | 0.1810.001 igéz v 0.7540.002 0.7040.002 igiz y 15.0140004 | 14.0510.040 iggz y

4.3.4. Performance evaluation (the overall weight of object-orientation)

Table 3 presents the performance results obtained by PObC++ for its version of the IS kernel of NPB. The goal of this
experiment is slightly different from the experiment described in Section 4.1.4 with the numerical multidimensional
integrator. It aims to compare the performance of a PObC++ program with the best native implementation written in C.
Thus, ignoring the weight of both object-orientation and the additional OOPP abstractions. Also, remember that PObC++ is
implemented on top of Boost.MPI, an object-oriented interface to MPI, being an indirection subject to performance penalties.

As expected, C/MPI outperforms PObC++ for all the pairs (P, n). The overhead estimations are also greater than the
overheads observed in multidimensional integration, varying between 5% and 12%. However, it is possible to observe that
the overheads decrease as the number of processors increases in this experiment, which suggests that the performance
of PObC++ is comparable to the performance of C/MPI for a large number of processors. Finally, from the results of this
experiment, the most important conclusion is that the gains in modularity and abstraction compensate for the overheads.

All the measures and relevant statistical summaries for this experiment can also be obtained at http://pobcpp.googlecode.
com.

http://pobcpp.googlecode.com
http://pobcpp.googlecode.com
http://pobcpp.googlecode.com
http://pobcpp.googlecode.com

E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90 89
5. Conclusions and further work

Due to the increasing interest in HPC techniques in the software industry, mainly parallel processing, as well as the
increasing importance of scientific and engineering applications in modern human society, the increasing complexity of
applications in HPC domains has attracted the attention of a significant number of researchers on programming models,
languages and techniques. They are faced with the challenging problem of reconciling well-known techniques to deal with
software complexity and large scale in corporative applications with the high performance requirements demanded by
applications in science and engineering.

Object-oriented programming is considered one of the main responses of programming language designers for dealing
with high complexity and scale of software. Since the 1990s, such programming style has become widespread among
programmers. Despite their success among programmers in business and corporative application domains, object-oriented
languages do not have the same acceptance among programmers in HPC domains, mainly among scientists and engineers.
This is usually explained by the performance overhead caused by some features present in these languages for supporting
higher levels of abstraction, modularity and safety, and by the additional complexity introduced by parallel programming
support.

The results presented in this paper, including design, implementation and performance evaluation of the first PobC++
prototype, are very promising. The examples are evidence that the proposed approach may coherently reconcile the
common programming styles adopted by parallel programmers and by object-oriented programmers, making it possible
for a programmer well educated in both parallel programming using MPI and in OOP, to take rapid advantage of OOPP
features. Moreover, the performance results evidence tolerable performance overheads, despite the gains in modularity and
abstraction when compared to direct MPI programming.

Acknowledgments

This work has been sponsored by CNPq, grant numbers 475826/2006-0 and 480307/2009-1.

References

[1] M. Baker, R. Buyya, D. Hyde, Cluster computing: a high performance contender, IEEE Computer 42 (7) (1999) 79-83.

[2] L Foster, The Grid: Blueprint for a New Computing Infrastructure, first ed., Morgan Kaufmann, 1998.

[3] D.E. Post, L.G. Votta, Computational science demands a new paradigm, Physics Today 58 (1) (2005) 35-41.

[4] D.E. Bernholdt, J. Nieplocha, P. Sadayappan, Raising level of programming abstraction in scalable programming models, in: IEEE International
Conference on High Performance Computer Architecture (HPCA), Workshop on Productivity and Performance in High-End Computing (P-PHEC),
Madrid, Spain, IEEE Computer Society, 2004, pp. 76-84.

[5] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, A. White, Sourcebook of Parallel Computing, Morgan Kauffman Publishers, 2003
(Chapters 20-21).

[6] H. Kuchen, M.e. Cole, Algorithm skeletons, Parallel Computing 32 (2006) 447-626.

[7] M. Cole, Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel programming, Parallel Computing 30 (3) (2004) 389-406.

[8] J. Dongarra, S.W. Otto, M. Snir, D. Walker, A message passing standard for MPP and workstation, Communications of ACM 39 (7) (1996) 84-90.

[9] E. Dijkstra, The humble programmer, Communications of the ACM 15 (10) (1972) 859-866.

[10] OJ. Dahl, SIMULA 67 Common Base Language, Norwegian Computing Center, 1968.

[11] OJ. Dahl, The birth of object orientation: the simula languages, in: Software Pioneers: Contributions to Software Engineering, Programming, and
Operating Systems Series, Springer, 2002, pp. 79-90.

[12] A. Goldberg, D. Robson, Smalltalk-80: the Language and its Implementation, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

[13] H. Milli, A. Elkharraz, H. Mcheick, Understanding separation of concerns, in: Workshop on Early Aspects — Aspect Oriented Software Development,
AOSD’04, 2004, pp. 411-428.

[14] A. Taivalsaari, On the notion of inheritance, ACM Computing Surveys 28 (1996) 438-479. URL: http://doi.acm.org/10.1145/243439.243441.

[15] B. Meyer, Object-Oriented Software Construction, Prentice Hall, Upper Saddle River, NJ, USA, 1988.

[16] M. Baker, B. Carpenter, G. Fox, S.H. Ko, X. Li, mpijava: a java interface to mpi, in: Procedings of the First UK Workshop on Java for High Performance
Network Computing, 1998.

[17] M. Baker, B. Carpenter, Mpj: a proposed java message passing api and environment for high performance computing, in: [IPDPS’00: Proceedings of the
15 IPDPS 2000 Workshops on Parallel and Distributed Processing, Springer-Verlag, London, UK, 2000, pp. 552-559.

[18] S. Mintchev, Writing programs in javampi, Tech. Rep. MAN-CSPE-02, School of Computer Science, University of Westminster, London, UK, Oct. 1997.

[19] B.-Y. Zhang, G.-W. Yang, W.-M. Zheng, Jcluster: an efficient java parallel environment on a large-scale heterogeneous cluster, Concurrency and
Computation: Practice and Experience 18 (12) (2005) 1541-1557. http://dx.doi.org/10.1002/cpe.986.

[20] G.Douglas, T. Matthias, Boost.mpi website, May 2010. URL: http://www.boost.org/doc/html/mpi.html.

[21] D. Gregor, A. Lumsdaine, Design and implementation of a high-performance mpi for c# and the common language infrastructure, in: PPoPP’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM, New York, NY, USA, 2008, pp. 133-142.
http://doi.acm.org/10.1145/1345206.1345228.

[22] LV.Kale, S. Krishnan, Charm++: a portable concurrent object oriented system based on C++, Tech. rep., Champaign, IL, USA, 1993.

[23] M. Philippsen, M. Zenger, JavaParty — transparent remote objects in java, Concurrency and Computation: Practice and Experience 9 (11) (1997)
1225-1242.

[24] T. Nguyen, P. Kuonen, ParoC++: a requirement-driven parallel object-oriented programming language, in: International Workshop on High-Level
Programming Models and Supportive Environments, IEEE Computer Society, Los Alamitos, CA, USA, 2003, p. 25.
http://doi.ieeecomputersociety.org/10.1109/HIPS.2003.1196492.

[25] T. Nguyen, P. Kuonen, Programming the grid with pop-C++, Future Generation Computer Systems 23 (1) (2007) 23-30.
http://dx.doi.org/10.1016/j.future.2006.04.012.

[26] Y. Aridor, M. Factor, A. Teperman, T. Eilam, A. Schuster, A high performance cluster jvm presenting pure single system image, in: JAVA’00: Proceedings
of the ACM 2000 conference on Java Grande, ACM, New York, NY, USA, 2000, pp. 168-177. http://doi.acm.org/10.1145/337449.337543.

http://doi.acm.org/10.1145/243439.243441
http://dx.doi.org/doi:10.1002/cpe.986
http://www.boost.org/doc/html/mpi.html
http://doi.acm.org/10.1145/1345206.1345228
http://doi.ieeecomputersociety.org/10.1109/HIPS.2003.1196492
http://dx.doi.org/doi:10.1016/j.future.2006.04.012
http://doi.acm.org/10.1145/337449.337543

90 E.G. Pinho, F.H. de Carvalho Junior / Science of Computer Programming 80 (2014) 65-90

[27] V.Sarkar, X10: an object oriented aproach to non-uniform cluster computing, in: OOPSLA’05: Companion to the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications, ACM, New York, NY, USA, 2005, p. 393.
http://doi.acm.org/10.1145/1094855.1125356.

[28] B.L. Chamberlain, D. Callahan, H.P. Zima, Parallel programmability and the chapel language, International Journal of High Performance Computing
Applications 21 (3) (2007) 291-312. http://dx.doi.org/10.1177/1094342007078442.

[29] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessn, S. Ryu, G. Steele Jr., S. Tobin Hochstad, The Fortress Language Specification Version 1.0, Mar.
2008.

[30] K.A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P.N. Hilfinger, S.L. Graham, D. Gay, P. Colella, A. Aiken, Titanium: a high-
performance Java dialect, in: Java for High-performance Network Computing, Concurrency: Practice and Experience 10 (11-13) (1998) 825-836
(special issue).

[31] E. Lusk, K. Yelick, Languages for high-productivity computing — the DARPA HPCS language support, Parallel Processing Letters 1 (2007) 89-102.

[32] F.H. Carvalho Jr., R. Lins, R.C. Correa, G.A. Aradjo, Towards an architecture for component-oriented parallel programming, Concurrency and
Computation: Practice and Experience 19 (5) (2007) 697-719.

[33] A.Grama, A. Gupta, J. Karypis, V. Kumar, Introduction to Parallel Computing, Addison-Wesley, 1976.

[34] S.L. Johnsson, T. Harris, KK. Mathur, Matrix multiplication on the connection machine, in: Proceedings of the 1989 ACM/IEEE Conference on
Supercomputing, Supercomputing’89, ACM, New York, NY, USA, 1989, pp. 326-332. URL: http://doi.acm.org/10.1145/76263.76298.

[35] F.Bertran, R. Bramley, A. Sussman, D.E. Bernholdst, J.A. Kohl,].W. Larson, K.B. Damevski, Data redistribution and remote method invocation in parallel
component architectures, in: 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS, IEEE, 2005.

[36] S.G. McPeak, Elkhound: a fast, practical glr parser generator, Tech. rep., Berkeley, CA, USA, 2003.

[37] J. Burkardt, NINTLIB — Multi-dimensional quadrature, web page. http://people.sc.fsu.edu/~burkardt/f_src/nintlib/nintlib.html.

[38] M. Cole, Algorithm Skeletons: Structured Management of Paralell Computation, Pitman, 1989.

[39] OpenMP Architecture Review Board, OpenMP: Simple, Portable, Scalable SMP Programming, 1997. URL: www.openmp.org.

[40] D.H. Bailey, T. Harris, W. Shapir, R. van der Wijngaart, A. Woo, M. Yarrow, The NAS Parallel Benchmarks 2.0, Tech. Rep. NAS-95-020, NASA Ames
Research Center, Dec. 1995, http://www.nas.nasa.org/NAS/NPB.

[41] R.Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling, Wiley-
Interscience, New York, NY, 1991, ISBN: 0471503361.

[42] K.E.Batcher, Sorting networks and their applications, in: Proceedings of AFIPS Spring Joint Computing Conference, vol. 32, 1980, pp. 307-314.

http://doi.acm.org/10.1145/1094855.1125356
http://dx.doi.org/doi:10.1177/1094342007078442
http://doi.acm.org/10.1145/76263.76298
http://people.sc.fsu.edu/~burkardt/f_src/nintlib/nintlib.html
http://www.openmp.org
http://www.nas.nasa.org/NAS/NPB

	An object-oriented parallel programming language for distributed-memory parallel computing platforms
	Introduction
	Context and contributions
	Parallel programming and message passing with MPI
	MPI programming model
	Point-to-point communication
	Collective communication
	Groups and communicators

	Principles of object-oriented languages
	Objects
	Encapsulation
	Classes
	Abstraction
	Modularity
	Functional independence

	Parallelism support in object-oriented languages
	Contributions

	Object-Oriented Parallel Programming (OOPP) and PObC++
	Parallel objects
	Classes of parallel objects
	Inheritance
	Scalable p-objects and parallel units
	A simple example of parallel class

	Communication and synchronization
	Intra-object communication: message-passing among units
	Inter-object communication: parallel methods
	Communication and synchronization in the example

	Instantiation
	Implementation
	Compiler
	Standard library

	Case studies
	1st case study: farm-based parallel numerical integration
	The Farm class (skeleton)
	The Integrator class
	The main program
	Performance evaluation: the weight of OOPP abstractions

	2nd case study: an OOPP interface for PETSc
	ParallelVec and ParallelMat class
	The ParallelKSP class

	3rd case study: parallel sorting
	The Sorter class
	The BucketSort class
	The OddEvenSort class
	Performance evaluation (the overall weight of object-orientation)

	Conclusions and further work
	Acknowledgments
	References

